Автоматическое включение уличного освещения на загородном участке
Отдых в доме за городом становится комфортным и приносит удовольствие лишь тогда, когда задачи по содержанию дома и участка сведены к минимуму. Зачастую хозяева вынуждены заниматься поливом посадок, контролировать обеспечение вентиляции и отопления дома, включать освещение участка и т.д. Конечно, такой “отдых” был волне стандартен для наших бабушек и дедушек, но сегодня совсем другие времена и стандарты жизни, которые все чаще исключают превращение пребывания за городом в труд, который отнимает много сил и времени.
Этот столь необходимый функционал сегодня можно вполне делегировать, при этом не нанятым работникам, а современному многофункциональному модульному электрооборудованию, позволяющему выполнить все процессы на загородном участке в автоматическом режиме, т.е. без участия человека. Его установка происходит быстро и легко в уже существующие системы снабжения электроэнергией и, таким образом, отпадает необходимость в проведении сложных ремонтных работ.
Процессов может быть много, но в этой статье мы остановимся на автоматическом включении с наступлением темноты уличного освещения.
Для большинства домовладельцев наступление вечера связано с уже сложившимся ритуалом – включением освещения на участке. Для включения и отключения света на участке чаще всего используются обычный выключатель в доме или автоматический выключатель в электрическом распределительном щите.
При управлении наружным освещением с помощью автоматических выключателей, установленных в электрощите можно включать и выключать отдельные группы светильников.
Все эти способы управления наружным освещением имеют свои преимущества – они дешевы и просты в управлении.
Хорошо, если прилегающая к коттеджу территория небольшая и расположено на ней всего несколько светильников. Но вот если загородное владение может “похвастаться” достаточно сложной системой освещения – скажем, светильники около крыльца, по периметру, на газонах, рядом с воротами, и при этом каждая зона имеет свой отдельный выключатель (либо другой элемент управления), то такими вечерами можно наблюдать картину, когда домовладелец долго и мучительно бегает по территории.
Существуют и боле современные способы управления уличным освещением, которые позволяют включать свет во дворе и в саду нажатием всего одной кнопки. Для этого используются инфракрасные и радиоуправляемые выключатели.
Эти беспроводные устройства дистанционного управления состоят из передатчика и приемника. Они могут управлять сразу несколькими электрическими нагрузками. Инфракрасные выключатели могут использоваться при относительно небольших расстояниях от передатчика до приемника, радиоуправляемые выключатели при расстояниях до 100 и более метров. Более подробно прочитать о такого типа выключателях вы можете в этой статье – Дистанционное управление освещением.
Несмотря на то что существует много простых способов включения уличного освещения, трудно поспорить с тем, что гораздо удобнее, когда освещение включается и выключается вообще без участия человека, т.е. в автоматическом режиме.
Современное модульное оборудование позволяет не только программировать на своевременное включение оборудование, но также создавать разные комбинации световых зон (скажем, в одно время будет включаться подсветка нескольких газонов, чуть позже – светильники на оставшихся газонах и около въезда).
Вопрос с включением освещения в автоматическом режиме становится особенно актуальным в осенние и зимние месяцы, когда солнце заходит очень рано и владельцы загородной недвижимости вынуждены возвращаться домой по темноте.
На рынке в настоящее время представлено множество устройств, которые позволяют решить задачу включения освещения в автоматическом режиме. Так, если необходимо с наступлением темноты зажигать уличные светильники, то лучше всего использовать сумеречные реле (фотореле). Вечером, если уровень освещенности понизится ниже определённого уровня, то реле сработает и произойдет включение освещения.
Светильники, которые устанавливают в целях безопасности около калиток, ворот гаража или входа в дом, можно подключить через датчик движения. Для этих целей чаще всего используется электронный инфракрасный датчик, обнаруживающий присутствие и перемещение человека в зоне его действия. При установке датчиков движения нужно выбрать правильное его месторасположение с учетом его чувствительности.
Для решения важной задачи управления уличным освещением можно остановить свой выбор и на астрономическом реле.
Основным преимущество этого устройства является то, что ему не требуется устанавливаемый на участке датчик освещённости: достаточно просто задать свои координаты. Так, комплект с астрономическим реле, как правило, включает в себя карту мира, по которой можно приблизительно указать своей месторасположение, указав при настройке реле соответствующие долготу и широту.
Устройство, благодаря своей внутренней программе, самостоятельно вычислит в указанной местности данное время года, время рассвета и заката, и позволит включать уличное освещение в автоматическом режиме с наступлением сумерек и отключать с восходом солнца. Пример такого устройства – астрономический таймер Rex 2000.
Чтобы организовать освещение у входа в дом или подъезда к участку, можно остановить свой выбор на реле времени с функцией задержкой на отключение. Управляется такое устройство от кнопочного выключателя и отключает через установленное время нагрузку (светильники во дворе или в саду).
Устанавливается время задержки включения нагрузки на лицевой панели реле, а регулироваться может в зависимости от устройства. В некоторых реле времени (таймерах) можно запрограммировать не только временные интервалы включения и отключения наружного освещения, но и распределить их по дням недели.
Очень интересные и полезные эффекты можно получить комбинируя различные типы устройств для управления освещением. Так, например, датчик движения можно подключить вместе с таймером. Благодаря этому, можно сделать так, чтобы по таймеру автоматически включались 2 лампочки по 20 Вт, а при приближении человека срабатывал датчик движения и при этом включались 2 лампочки по 100 Вт.
Огромное количество возможностей для управления наружным освещением можно получить используя оборудование для построения систем домашней автоматизации (Х10, Z-Wave и т.п.). Современные технологии и устройства домашней автоматизации помогут вам создать наиболее комфортные и удобные схемы управления наружным освещением, подходящего вам уровня стоимости и сложности.
Все перечисленные в статье приборы – фотореле, таймеры, датчики движения могут быть интегрированы в одну систему, которой можно управлять с помощью пульта дистанционного управления или полностью автоматически. Подробнее о возможностях управления уличным освещением и прожекторами с использованием системы бытовой автоматизации Х10 будет рассказано в следующих статьях.
Схемы автоматов включения освещения
Чтобы свет, скажем, на лестничной площадке или на номерном знаке дома, зажигался автоматически, как только стемнеет на улице, и выключался с рассветом, осветительную лампу нужно подключить к автомату, следящему за наружным освещением. Познакомимся с двумя конструкциями таких автоматов.
Первый из них (рис. А-12) выполнен на четырех транзисторах. Датчиком освещенности — чувствительным элементом автомата — служит фоторезистор R1. Он подключен к источнику питания через резисторы R2 и R3 и образует вместе с ними цепь делителя напряжения, сопротивление одного из плеч которого (от движка подстроечного резистора R2 до минусового провода питания) изменяется в зависимости от освещенности.
Делитель напряжения подключен к эмиттерному повторителю на транзисторе VT1, который позволяет согласовать сравнительно высокое сопротивление делителя напряжения с низким сопротивлением последующих каскадов автомата.
С нагрузкой эмиттерного повторителя (резистор R4) соединен триггер Шмитта, выполненный на транзисторах VT2, VT3. Далее следует каскад на транзисторе VT4 — усилитель управляющего сигнала. В цепь эмиттера этого транзистора включен управляющий электрод тринистора VS1, выполняющего роль бесконтактного выключателя,— он управляет осветительной лампой EL1, стоящей в анодной цепи тринистора.
Питается автомат от сети 220 В через выпрямитель, выполненный на диодах VD2, VD3. Выпрямленное напряжение фильтруется конденсатором С1 и стабилизируется кремниевым стабилитроном VD1. Конденсатор С2 выполняет роль гасящего резистора, на котором падает излишек напряжения.
Если освещенность на улице достаточна, напряжение на выходе делителя (движок резистора R2), а значит, на выходе эмиттерного повторителя, таково, что триггер Шмитта находится в устойчивом состоянии, при котором транзистор VT2 открыт, a VT3 закрыт. Будет закрыт и транзистор VT4, а следовательно, на управляющем электроде тринистора VS1 не будет напряжения и тринистор также окажется закрытым. Лампа освещения погашена.
При уменьшении освещенности сопротивление фоторезистора возрастает, напряжение на выходе эмиттерного повторителя уменьшается. Когда оно достигнет определенного значения, триггер перейдет в другое устойчивое состояние, при котором транзистор VT2 закрыт, a VT3 открыт. При этом откроется транзистор VT4 и через управляющий электрод тринистора начнет протекать ток. Тринистор откроется, лампа освещения вспыхнет.
Утром, когда освещенность достигает порогового значения, триггер вновь переходит в первоначальное состояние и лампа гаснет.
Нужный порог срабатывания устройства устанавливают подстроечным резистором R2.
При указанных на схеме деталях к автомату можно подключать лампу мощностью до 60 Вт. Вместо ФС-К1 вполне применим другой аналогичный по параметрам фоторезистор. Транзисторы VT1 — VT3 могут быть любые из серий МП39—МП42, но с коэффициентом передачи тока не ниже 50, a VT4 — любой из серий МП35—МП38 с коэффициентом передачи тока не менее 30. Вместо стабилитрона Д814Д подойдет Д813, вместо диодов Д226Б — любые другие выпрямительные, рассчитанные на выпрямленный ток не менее 50 мА и обратное напряжение не ниже 300 В.
Подстроечный резистор R2 — СПЗ-16, остальные резисторы — МЛТ-0,25. Конденсатор С1 — К50-6, С2 — МБГО или другой бумажный, рассчитанный на работу в цепях переменного и пульсирующего тока I и с номинальным напряжением не ниже указанного на схеме.
Детали автомата смонтированы на плате (рис. А-13) из одностороннего фольгированного стеклотекстолита. Под тринистор в плате просверлено отверстие, вокруг которого оставлена фольга — с ней и будет контактировать корпус тринистора, являющийся анодом.
Выводы катода и управляющего электрода расположены сверху тринистора — их соединяют монтажными проводниками в изоляции с соответствующими точками печатной платы. Конденсатор С2 крепят к плате винтами (отверстия под винты на плате не показаны).
Плату размещают в корпусе из изоляционного материала и соединяют монтажными проводами в изоляции с фоторезистором, а сетевыми проводами в хорошей изоляции — с сетью и осветительной лампой. Фоторезистор укрепляют, например, на окне, но так, чтобы на его чувствительный слой не попадали прямые лучи солнца или свет от уличных фонарей.
А вот другая конструкция (рис. А-14), содержащая всего два транзистора: полевой VT1 и однопереходный VT2. На однопереходном выполнен генератор импульсов, который включается при определенном напряжении на эмиттере. А оно, в свою очередь, определяется освещенностью чувствительного слоя фоторезистора R1.
На полевом же транзисторе собран каскад, способствующий более четкому «срабатыванию» генератора. Как это происходит, станет ясно из описания работы автомата. А пока продолжим рассказ об устройстве конструкций.
С одной из баз однопереходного транзистора соединен управляющий электрод тринистора, в анодной цепи которого стоит разъем XS1 — в него включают осветительную лампу. Напряжение на тринистор и лампу поступает через диодный мост, составленный из диодов VD4 — VD7. Благодаря ему тринистор защищен от обратного напряжения на аноде.
Пульсирующее напряжение (частота пульсаций 100 Гц) подается через резистор R7 на стабилитрон VD3, который сглаживает пульсации благодаря своему стабилизирующему свойству. Еще более пульсации выпрямленного напряжения сглаживаются конденсатором С 4 — с него постоянное напряжение подается на цепи автомата.
Итак, автомат включен в сеть, фоторезистор направлен светочувствительным слоем на улицу. Пока светло, сопротивление фоторезистора мало, а значит, мало и напряжение на эмиттере однопереходного транзистора. Генератор не работает, осветительная пампа не горит.
По мере снижения освещенности сопротивление фоторезистора растет, а значит, возрастает и напряжение на эмиттере транзистора VT2.
При определенной освещенности фоторезистора сопротивление его становится таким, что генератор начинает работать. Иа резисторе R6 появляется импульсное напряжение положительной полярности, которое открывает тринистор и включает лампу. Частота следования импульсов значительно больше частоты пульсаций питающего напряжения, поэтому тринистор открывается практически в начале каждого полупериода сетевого напряжения.
А что же каскад на транзисторе VT1? Первые же импульсы генератора поступают с резистора R6 через конденсатор С3 на выпрямитель, собранный на диодах VD1, VD2. В результате на резисторе нагрузки R2, иначе говоря, на затворе полевого транзистора VT1, появляется отрицательное (по отношению к истоку) постоянное напряжение, которое закрывает этот транзистор. Напряжение на стоке возрастает, увеличивается напряжение и на эмиттере однопереходного транзистора. Благодаря этому генератор работает надежнее и не выключается даже при некоторых колебаниях освещенности фоторезистора.
Утром, когда забрезжит рассвет и возрастет освещенность фоторезистора, сопротивление его упадет настолько, что генератор выключится. Лампа освещения погаснет. В этот момент откроется транзистор VT1 и еще более снизит напряжение на эмиттере однопереходного транзистора.
Таким образом, благодаря каскаду на транзисторе VT1 пороги «срабатывания» и «отпускания» генератора на транзисторе VT2 очень четкие и несколько отличаются друг от друга по напряжению.
Фоторезистор может быть ФС-К1, СФ2-5, СФ2-6, постоянные резисторы — МЛТ-2 (R7) и МЛТ 0,125 или МЛТ-0,25 (остальные). Конденсаторы С1 — С3 — КЛС, КМ, МБМ; С4— К50-6 или К50-3. Вместо транзистора КП3О3Б подойдет КП3О3А, а вместо КТ117Б — другой транзистор этой серии. Диоды VD1, VD2 — любые из серий Д2, Д9, КД102, КД503; VD4 — VD7 — любые выпрямительные с допустимым обратным напряжением не менее 300 В и выпрямленным током, допускающим питание лампы данной мощности. Вместо стабилитрона КС518А (он на напряжение стабилизации 18 В) можно использовать два последовательно соединенных стабилитрона Д814Б или Д814В. При использовании осветительной лампы мощностью 100 Вт тринистор может быть указанной на схеме серии с буквенными индексами К—Н.
Если же используется лампа мощностью до 60 Вт, подойдет тринистор КУ201Л или КУ201М.
Как и в предыдущем автомате, все детали, кроме фоторезистора, смонтированы на печатной плате (рис. А-15) из одностороннего фольгированного стеклотекстолита. Плату затем укрепляют в корпусе из изоляционного материала. Рекомендации по установке фоторезистора те же, что и в предыдущем случае.
При проверке автомата требуемый порог срабатывания более точно устанавливают подбором резистора R3. Его сопротивление не должно быть менее 10 кОм.
Но не только для лестничной клетки может быть полезен автоматический включатель освещения. Он найдет применение и в квартире, например, в ванной комнате или другом помещении. И тогда вы можете быть спокойны — оставить бесцельно горящим свет в этих помещениях вряд ли удастся. Да и выключателем теперь пользоваться не нужно — автомат полностью заменит его и будет сам включать освещение тогда, когда оно действительно нужно.
Схема одного из вариантов такого автомата приведена на рис. А-16. Автомат включает освещение, как только открывают дверь. Если дверь закрывают изнутри на запор, лампа освещения продолжает гореть. При закрывании двери снаружи (или изнутри, но не на запор) следует выдержка времени 8. 10 с, после чего свет гаснет. Яркость света в этом автомате нарастает плавно (за 1. 2 с), что значительно продляет срок службы лампы.
Устройство датчика, следящего за положением двери и ее запора, показано на рис. А-17. В дверной раме закреплен геркон (герметизированный контакт), а напротив него в дверь врезан постоянный магнит. Контакты геркона разомкнуты, когда дверь открыта, а значит, магнит удален, и замыкаются при закрывании двери благодаря действию магнитного поля постоянного магнита. Если же дверь закрывают изнутри на запор, его стальной язычок (или железная пластина, связанная с ним) экранирует геркон от магнитного поля и контакты геркона оказываются разомкнутыми.
Геркон (SF1 на схеме) включен в цепь зарядки конденсатора С1. Если дверь открыта (или закрыта изнутри на запор), контакты геркона находятся в показанном на схеме состоянии. Конденсатор О начинает заряжаться через цепочку VD1, С2, VD3. Поскольку зарядная цепь питается не постоянным током, а трапецеидальными импульсами положительной полярности (они образуются из-за ограничения стабилитроном VD4 импульсов напряжения частотой 100 Гц, поступающих на него через резистор R7 с двухполупериодного выпрямителя на диодах VD5 — VD8), конденсатор С1 заряжается «порциями» от каждого импульса.
Обеспечивается такой режим еще и тем, что к моменту начала следующего импульса конденсатор С2 разряжается. Это происходит в момент окончания предыдущего импульса — тогда напряжение конденсатора С2 оказывается приложенным через диод VD2 и резисторы R3, R4 к эмиттерному переходу транзистора VT1. Транзистор открывается и разряжает конденсатор. По мере зарядки конденсатора С1 начинает открываться транзистор VT2, коллекторный ток его возрастает. При определенном значении этого тока начинает работать генератор импульсов, собранный на транзисторном аналоге тринистора (транзисторы VT3 и VT4) и конденсаторе СЗ. Как только напряжение на конденсаторе СЗ (оно появляется в результате зарядки конденсатора коллекторным током транзистора VT2) достигает порогового, аналог тринистора «срабатывает» и конденсатор разряжается через управляющий электрод тринистора VS1 и резистор R5. Тринистор открывается (и остается открытым до конца полупериода сетевого напряжения), замыкает диагональ моста VD5 — VD8, и лампа EL1 зажигается. Ее яркость зависит от продолжительности зарядки конденсатора СЗ до напряжения «срабатывания» аналога тринистора.
Продолжительность, в свою очередь, определяется током коллектора транзистора VT2, а значит, зарядкой конденсатора С1 до напряжения полного открывания транзистора VT2. Происходит это примерно через 1. 2 с — за такое время яркость лампы будет нарастать до максимальной.
Стоит закрыть дверь (или при закрытой двери не задвинуть запор)— и замкнувшиеся контакты геркона зашунтируют цепь зарядки конденсатора С1. Он начнет разряжаться через резисторы R1, R6 и эмиттерный переход транзистора VT2. Спустя 8. 10 с напряжение на конденсаторе упадет настолько, что транзистор VT2 начнет закрываться. Яркость лампы будет плавно уменьшаться, а затем лампа погаснет.
Кроме указанного на схеме, можно использовать тринисторы КУ201 Л, КУ202К—КУ202Н. Транзисторы КТ201Г заменимы на транзисторь той же серии или на любые транзисторы серии КТ315; П416Б — на П416 П401—П403, ГТ308; МП114 — нг МП115, МП116, КТ203. Вместе диодов Д220 подойдут Д223, КД102, КД103. Конденсатор С1 — К50-6; С2, СЗ — МБМ, КМ-4, КМ-5. Резистор R7 — МЛТ-2, остальные — МЛТ-0,5. Вместо стабилитрона Д814Д подойдет Д813, а вместо диодов VD5—VD8 — любые выпрямительные диоды, рассчитанные на обратное напряжение не ниже 300 В и выпрямленный ток не менее 300 мА. Геркон — любой другой с нормально разомкнутыми контактами и «срабатывающий» от данного постоянного магнита на заданном расстоянии.
Детали автомата можно смонтировать на печатной плате (рис. А-18) из фольгированного материала и укрепить плату в любом подходящем корпусе из изоляционного материала. Корпус желательно расположить вблизи выключателя, чтобы короче были соединительные проводники от диодного моста — их подключают к контактам сетевого выключателя, а ручку выключателя ставят в положение «Выключено». Выводы геркона соединяют с автоматом многожильными монтажными проводниками в изоляции.
Как правило, автомат не требует налаживания и начинает работать сразу. Изменить продолжительность плавного нарастания яркости света можно подбором конденсатора С2 (при уменьшении его емкости продолжительность нарастания яркости увеличивается). Для изменения задержки выключения света следует подобрать конденсатор С1 (задержка увеличивается при увеличении его емкости).
Автомат способен управлять лампой мощностью 60 Вт. Если применена лампа большей мощности, нужно установить тринистор на теплоотводящий радиатор и собрать выпрямитель на диодах с большим допустимым выпрямленным током.
А вот другой автомат (рис. А-19) подобного назначения, в котором используется всего один транзистор. Автомат также можно подключать параллельно выводам выключателя Q1 подсобного помещения.
Органами управления автомата являются выключатель SA1, контакты которого образуют наружные задвижка и скоба на дверной раме, и геркон SF1, установленный на двери аналогично предыдущему варианту, но в верхнем углу дверной рамы. Когда дверь закрыта, контакты SA1 могут быть как замкнуты, так и разомкнуты (если помещение используется и задвижка открыта), а контакты SF1 — только разомкнуты. При открывании двери контакты выключателя оказываются разомкнутыми, а контакты геркона — замкнутыми. Через резистор R2 и геркон на управляющий электрод три-нистора VS1 подается напряжение. Тринистор открывается, лампа освещения EL1 зажигается.
В этот момент на резисторе R1 появляется пульсирующее напряжение (амплитудой около 1 В при мощности осветительной лампы 40 Вт и почти 2 В при мощности лампы 100 Вт). Оно сглаживается цепочкой VD2C1. G конденсатора С1 постоянное напряжение поступает на генератор, собранный на транзисторе VT1. Частота следования импульсов генератора составляет 3 кГц. С обмотки 111 трансформатора Т1 импульсы подаются на управляющий электрод тринистора, поэтому тринистор остается открытым после закрывания двери изнутри помещения и размыкания контактов геркона.
По окончании пользования помещением дверь закрывают на наружную задвижку, контакты SA1 замыкаются и шунтируют обмотку II трансформатора. Колебания генератора срываются, тринистор закрывается, лампа освещения гаснет.
В генераторе может работать любой маломощный германиевый транзистор структуры p-n-р со статическим коэффициентом передачи тока не менее 50. Вместо диодного моста VD1 можно установить четыре диода КД105Б—КД105Г или аналогичные по выпрямленному току и обратному напряжению. Тринистор — серии КУ201 с буквенными индексами К—Н. Конденсатор О —К50-12 (подойдет и К50-6); С2 — МБМ; резисторы — МЛТ-2.
Трансформатор Т1 самодельный, он выполнен на кольце типоразмера К10X6X4 из феррита М200НМ. Обмотка I содержит 2ХЮ0 витков провода ПЭЛШО 0,1, обмотка II — 6. 10 витков тонкого монтажного провода в поливинилхлоридной изоляции, обмотка III—40 витков ПЭЛШО 0,1.
Под эти детали рассчитана печатная плата (рис. А-20) из одностороннего фольгированного стеклотекстолита. Печатные проводники выполнены не травлением в растворе, как это делают обычно, а прорезанием в фольге изолирующих канавок специальным резаком или острым ножом. Плату с деталями укрепляют в корпусе, который размещают в удобном месте помещения. Как и в предыдущем случае, геркон (он может быть любой, но обязательно с нормально замкнутыми или переключающими контактами) соединяют с автоматом многожильными монтажными проводниками.
Если автомат смонтирован без ошибок, никакого налаживания не понадобится. Может случиться, что генератор не возбуждается с данной осветительной лампой (ведь от ее мощности зависит напряжение питания генератора). Тогда придется либо поставить резистор R1 с большим сопротивлением, либо другой транзистор — с большим коэффициентом передачи.
В случае нормальной работы генератора и неоткрывающемся тринисторе (свет гаснет при закрывании двери, но не замкнутых контактах SA1), нужно изменить полярность подключения выводов обмотки III.
Здесь Ваше мнение имеет значение – поставьте вашу оценку (оценили – 13 раз) |
Бренд | Стоимость, рублей | |||||||||||||||||
«ФР-601» |
| «ФР-602» | 280 | |||||||||||||||
«ФР-7М» |
| «WZM-01/S1» |
| «SNS L 07» |
| Простейшая схема включения фотореле в схему управления наружным освещением В этом случае подключение устройства в схему управления работой осветительных приборов выполняется в распределительной коробке путём включения контактов электромеханического реле в фазный провод, идущий к управляемому источнику света. Нулевой провод идёт к светильнику от распределительной коробки напрямую. При использовании в схеме управления освещением датчика движения он устанавливается в фазный провод после фотореле, схема подключения в этом случае приведена на рисунке. Включение в схему управления датчиков освещения и движения При установке фотореле в цепях управления контактора или магнитного пускателя схема подключения выглядит следующим образом. Монтаж и подключение фотореле для уличного освещенияРаботы по монтажу фотореле можно разбить на три этапа: выбор и подготовка места для установки, монтаж и настройка прибора. Выбор места установки датчика освещённостиДля нормальной работы системы наружного освещения в автоматическом режиме с использованием фотореле при выборе места его установки необходимо, чтобы:
Установка фотореле на фасаде здания с использованием монтажного кронштейна Монтажные работыПоследовательность и характер монтажных работ зависят от варианта установки фотореле для уличного освещения и его конструкции. При использовании моделей «ФР-601», «ФР-602» или их аналогов работы выполняются следующим образом.
При монтаже фотореле в электрическом шкафу с выносным датчиком крепление осуществляется на ДИН-рейку, а фотоэлемент устанавливается снаружи здания. Расстояние от реле до выносного датчика регулируется максимально допустимым размером соединительных проводов, идущих комплектно с прибором. Настройка датчика освещённостиОтдельные модели датчиков освещённости идут с предустановленными настройками, поэтому в процессе эксплуатации не предусматривается их регулировка (это касается наиболее бюджетных устройств). Для моделей, имеющих в своей конструкции подстроечные элементы, перед началом использования необходимо выполнить их настройку. Наиболее простой вариант регулировки − это наличие поворотных регуляторов, поворачивая которые в ту или иную сторону, можно добиться нужного результата. У более сложных и дорогих моделей на наружной панели выставлены значения освещённости, соответствующие порогам срабатывания фотореле. Один из вариантов размещения регуляторов работы комбинированного фотореле с датчиком движения Можно ли сделать фотореле своими руками (видео)Как сделать датчик освещённости из подручных средств и своими руками, расскажет следующий видеосюжет. Устанавливаем автомат включения уличного освещения своими рукамиАвтоматы отключения уличного освещения в последнее время пользуются все большим спросом. Ведь многие озаботились проблемой освещения придомовой территории. Каждому хочется выполнить наружное освещение максимально эффективным, экономным и безопасным. И вводные автоматы, датчики управления освещением, и схемы освещения становятся все более востребованными. Поэтому и мы решили уделить этому вопросу внимание. Варианты схем ручного управления наружным освещениемНа данный момент представлено богатое разнообразие схем выполнения наружного освещения. Каждая из них имеет свои преимущества и недостатки. Недостатки в большинстве случаев сводятся к конечной стоимости освещения, поэтому наша инструкция предлагает варианты схем освещения от самой дешевой к самой дорогой. Ручное включение наружного освещенияПервый, и, пожалуй, самый простой способ, это включение освещения посредством воздействия на автоматический выключатель системы наружного освещения. В этом случае загораются сразу все лампы наружного освещения, если они не имеют отдельных выключателей. Схема не требует особых изысков и максимально надежна.
Включение наружного освещения от кнопкиХодить к распределительному щитку и постоянно включать и отключать свет — достаточно обременительно. Поэтому некоторые установили кнопки в удобном месте и производят эти операции от них. Это более удобно, но требует установки дополнительного оборудования.
Автоматическое включение освещенияИспользование в качестве вводных автоматов датчиковВсе это «дедовские» методы, но ведь современные технологии не стоят на месте. Сейчас все большее распространение получают схемы с использованием датчиков движения или освещенности. Эти приборы позволят вам полностью устраниться от управления сетью освещения.
Схема включения наружного освещения с использованием датчика движенияДатчики движения устанавливают как автомат на освещение определенного участка. Это может быть садовая дорожка, подъездная дорога к гаражу, в общем, там, где свет нужен лишь на небольшой промежуток времени.
Схема включения наружного освещения от датчика освещенностиМы уже частично описали основные варианты использования датчика освещенности выше. Но давайте более подробно остановимся на схеме его подключения.
Схема включения мощного наружного освещения от датчика освещенностиА вот какой автомат ставить на освещение, если нам необходимо, чтобы при потемнении включалось сразу несколько групп. При этом суммарная нагрузка может превышать и 25 и 32 А. Для этого используется схема совместного подключения датчика и пускателя.
ВыводЗная какие схемы возможно применять для управления наружным освещением, вы без труда сможете смонтировать все своими руками. Ведь никаких сложностей в этом нет, а более детальную информацию по монтажу каждой из представленных схем вы с легкостью найдете на страницах нашего сайта. Как используется фотореле для уличного освещения?Фотореле для уличного освещения – особое устройство, созданное для управления светом и его источниками без участия человека. Исходя из термина фотореле, понятно что оно управляет уличным освещение. Эти приборы применяются для освещения частных домов, коттеджей, улицы, парков, скверов и многих других мест, где требуется в определенное время сделать светло. Фотореле оснащается специальным датчиком, реагирующий на степень освещенности и реагирующие на ее изменение. Данный прибор автоматически срабатывает если меняется уровень и степень окружающего освещения. С сумерками, оно срабатывает на низкий уровень света и включает искусственное освещение. Работа этого реле основывается на изменении своих параметров работы и технических характеристик в зависимости от количества солнечного света, точно реагируя на него. В строение входят фоторезисторы, коррелирующие свое сопротивление с освещенностью. В вечернее время, когда естественное освещение снижается, срабатывает датчик, к которому подключается данное фотореле. В статья описано устройство, его функционирование, правила установки такого устройства. В статье содержится видеоролик и статья, посвященная этой тематике. Устройство и принцип действияЭто устройство имеет множество названий. Самое распространенное — фотореле, но называют еще фотоэлемент, датчик света и сумерек, фотодатчик, фотосэнсор, сумеречный или светоконтролирующий выключатель, датчик освещенности или день-ночь. В общем, названий много, но суть от этого не меняется — устройство позволяет в автоматическом режиме включать свет в сумерки и выключать на рассвете. Работа устройства основана на способности некоторых элементов изменять свои параметры под воздействием солнечного света. Чаще всего используют фоторезисторы, фототранзисторы и фотодиоды. Вечером, при уменьшении освещенности, параметры светочувствительных элементов начинают меняться. Когда изменения достигнут определенной величины, контакты реле смыкаются, подавая питание на подключенную нагрузку. На рассвете изменения идут в обратном направлении, контакты размыкаются, свет гаснет. Характеристики и выборВ первую очередь выбирают напряжение, с которым будет работать датчик света: 220 В или 12 В. Следующий параметр — класс защиты. Так как устройство устанавливается на улице, он должен быть не ниже IP44 (цифры могут быть больше, меньше — нежелательно). Это значит, что внутрь устройства не могут попасть предметы размером более 1 мм, а также что водяные брызги ему не страшны. Второе, на что стоит обратить внимание — на температурный режим эксплуатации. Ищите такие варианты, которые с запасом перекрывают средние показатели в вашем регионе как по плюсовой, так и по минусовой температуре. Подбирать модель фотореле также необходимо по мощности подключаемых к нему ламп (выходная мощность) и току нагрузки. Оно, конечно, может «тянуть» нагрузку немного больше, но при этом могут быть проблемы. Так что лучше брать даже с некоторым запасом. Это были обязательные параметры, по которым надо выбирать фотореле для уличного освещения. Есть еще несколько дополнительных. В некоторых моделях есть возможность подстроить порог срабатывания — сделать фотодатчик более или менее чувствительным. Уменьшать чувствительность стоит при выпадении снега. В этом случае отраженный от снега свет может быть воспринят как рассвет. В результате свет будет то включаться, то отключаться. Такое представление вряд ли понравится. Обратите внимание на пределы регулировки чувствительности. Они могут быть больше или меньше. Например, у фотореле AWZ-30 белорусского производства этот параметр — 2-100 Лк, у фотоэлемента P02 диапазон подстройки 10-100 Лк. Задержка срабатывания. Для чего нужна задержка? Для исключения ложных включений/отключений света. Например, ночью на фотореле попал свет фар проезжающего автомобиля. Если задержка срабатывания мала, свет отключится. Если она достаточна — хотя-бы 5-10 секунд, то этого не произойдет. Выбор места установкиДля корректной работы фотореле важно правильно выбрать его местоположение. Необходимо учесть несколько факторов:
Как видите при организации автоматического освещения на улице выбрать место для установки фотореле — не самая простая задача. Иногда приходится переносить его несколько раз, пока найдешь приемлемое положение. Часто, если датчик света используют для включения фонаря на столбе, фотореле стараются расположить там же. Это совершенно не обязательно и очень неудобно — счищать пыль или снег приходится довольно часто и каждый раз залезать на столб не очень весело. Само фотореле можно разместить на стене дома, например, а к светильнику дотянуть кабель питания. Это наиболее удобный вариант. Схемы подключенияСхема подключения фотореле для уличного освещения проста: на вход устройства заводится фаза и ноль, с выхода фаза подается на нагрузку (фонари), а ноль (минус) на нагрузку идет от автомата или с шины. Если делать все по правилам, соединение проводов необходимо делать в распределительной (монтажной коробке). Выбираете герметичную модель для расположения на улице, монтируете в доступном месте. Как подключить фотореле к освещению на улице в этом случае — на схеме ниже. Если свет должен включаться только на время нахождения человека (в уличном туалете, возле калитки), к фотореле добавляют датчик движения. В такой связке лучше сначала поставить светочувствительный выключатель, а после него — датчик движения. При таком построении датчик движения будет срабатывать только в темное время суток. Особенности подключения проводовФотореле любого производителя имеет три провода. Один из них — красный, другой — синий (может быть темно-зеленым) и третий может быть любого цвета, но обычно черный или коричневый. При подключении стоит помнить:
Если посмотрите на все выше приведенные схемы, то увидите, что они нарисованы с соблюдением этих правил. Все, больше никаких сложностей. Подключив так провода (не забудьте, что нулевой провод также надо подключить на лампу) вы получите рабочую схему. Как настроить фотореле для уличного освещенияНастраивать датчик освещенности необходимо после установки и подключения в сеть. Для регулировки пределов срабатывания в нижней части корпуса имеется небольшой пластиковый поворотный диск. Его вращением и задается чувствительность. Чуть выше на корпусе есть стрелочки, которыми обозначено, в какую сторону крутить для увеличения и уменьшения чувствительности фотореле (влево- уменьшить, вправо — увеличить). АстротаймерАстрономический таймер (астротаймер) — это другой способ автоматизировать уличное освещение. Принцип его работы отличается от фотореле, но он тоже включает свет вечером и выключает его утром. Управление светом на улице происходит по времени. В данном устройстве заложены данные про то, в какое время темнеет/светает в каждом регионе в каждый сезон/день. При настройке астротаймера вводятся GPS координаты его установки, выставляется дата и текущее время. Согласно заложенной программе устройство и работает. Чем оно удобнее?
Недостаток — высокая цена. Во всяком случае, модели, которые есть в торговой сети, стоят довольно солидных денег. Но можно купить в Китае намного дешевле, правда, как он будет работать — вопрос. Технические характеристики фотореле для уличного освещенияЛюбое фотореле имеет определенные технические характеристики, в соответствии с которыми можно подобрать его для конкретных задач: Напряжение питания. В большинстве случаев фотореле предназначены для работы в сетях 220 В, частотой 50 Гц.
Фотореле может иметь регулятор порога срабатывания и большинство этих умных приборов имеет его. Очень редко, но встречаются модели, не имеющие регулировки. Естественно, при выборе наиболее предпочтительными должны быть фотореле с возможностью регулировки. Некоторые фотореле могут иметь встроенный таймер, позволяющий задавать интервал времени, в течение которого разрешена работа фотореле. За пределами этого периода освещение включаться не будет. Некоторые модели имеют на корпусе выключатель, который позволяет принудительно включать или отключать освещение независимо от времени суток, что может быть полезно в некоторых случаях. Например, если нужно вообще отключить освещение на какой-то период, при этом не надо отключать провода от клемм прибора. Выгода от выбора реле освещенияСегодня актуальным становится вопрос экономии электрической энергии и денежных средств. Заметим, что при помощи сегодняшних технологий доступна 30% экономия энергии. Фотореле – это оптимальный выбор для управления бытовым, охранным, промышленным, торговым освещением. Выбирая реле для уличного освещения, вы сможете продлить срок службы ламп и осветительных приборов, а также наслаждаться экономией на освещении. В приборе реализована полезная функция обязательного включения и принудительного отключения источников света даже при выходе фотодатчика из строя. Возможно задавать режим управления освещением не только с учетом времени суток, но и дополнительные диапазоны, например, не включать свет, когда персонал на объекте отсутствует. Достоинства прибора в том, что он имеет сравнительно простую настройку, не требующую корректировок. Один раз задав требуемый режим работы прибора РФТ-2, вы больше можете не беспокоиться о вкл./выкл. системы освещения, ведь реле сделает за вас всю работу. Основные выгоды от использования профессионального реле управления освещением.
Высокая точность, надежность и бесперебойность – это свойства профессионального фотореле управления освещением НПО Электроавтоматика. В работе прибора исключены сбои и ошибочные срабатывания. Создайте задержку на включение, чтобы реле не реагировало на кратковременное изменение освещенности: например, машина в светлое время припарковалась и затемнила зону датчика освещения. В конструкции содержится аккумулятор, который при сбоях в электросети защищает данные от потери. Вас также приятно порадует простой и быстрый монтаж прибора. Реле устанавливают на дин-рейку, можно также закрепить прибор с помощью шурупов. ЗаключениеБолее подробно об устройстве фотореле можно из статьи фотореле. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. |