Варистор принцип работы

Что такое варистор, основные технические параметры, для чего используется

Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.

Что такое варистор и где применяется

Варистор – это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Виды и принцип работы

При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения. То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

  1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
  2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

Маркировка, основные характеристики и параметры

Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.

Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).

Основными характеристиками варисторов являются следующие параметры:

Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор (обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;

Максимально допустимое напряжение – диапазон напряжения (среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;

Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса (измеряется в Джоулях);

Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока (измеряется в Амперах);

Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте (падает до нуля, если к варистору приложен большой ток);

Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны (указывается в процентах).

Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое (обычно несколько десятков наносекунд).

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

  • низкочастотный шум при работе;
  • старение компонента (утрата параметров со временем);
  • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
  • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

Подбор варистора

Чтобы правильно подобрать варистор для определенного устройства необходимо знать характеристики его источника питания: сопротивление и мощность импульсов переходных процессов. Максимально допустимое значение тока определяется в том числе длительностью его воздействия и количеством повторений, поэтому при установке варистора с заниженным значением пикового тока, он достаточно быстро выйдет из строя. Если говорить кратко, то для эффективной защиты прибора необходимо выбирать варистор с напряжением, имеющим небольшой запас к номинальному.

Также для безотказной работы такого электронного компонента очень важна скорость рассеивания поглощенной тепловой энергии и возможность быстро возвращаться в состояние нормальной работы.

Обозначение на схеме и варианты подключения варистора

На схемах варистор обычно обозначается, как обычный резистор, но с добавлением буквы U рядом с наклонной чертой. Эта черта и указывает в схемах на то, что данный элемент имеет зависимость сопротивления от напряжения в цепи. Также на электрической схеме этот элемент маркируется двумя буквами R и U с добавлением порядкового номера (RU1, RU2 … и т.д.).

Существует большое количество вариантов подключения варисторов, но общее для всех способов – это то, что данный компонент подключается параллельно цепи питания. Поэтому при отсутствии опасных значений импульсов напряжения, ток, который протекает через варистор имеет малую величину (ввиду больших значений сопротивления) и никак не влияет на работоспособность системы. При возникновении перенапряжения, варистор изменяет сопротивление до малых величин, нагрузка шунтируется, и поглощенная энергия рассеивается в окружающее пространство.

Варисторы – что это такое, принцип действия, характеристики и параметры.

В статье изучим что такое варистор, узнаем принцип его действия, рассмотрим основные характеристики и параметры, которыми обладает данное полупроводниковое устройство.

Варистор – это полупроводниковый резистор, сопротивление которого зависит от подаваемого на него напряжения. Имеет нелинейную симметричную вольт-амперную характеристику. Изготавливается прессованием из таких полупроводников как оксид цинка(ZnO) или карбид кремния (SiC). Из-за своего ВАХ, варистор может применяться в цепях переменного и постоянного тока.

Свое название варистор получил от английского словосочетания Variable Resistor, что дословно переводиться как переменный резистор. От слова Variable взяли начало, а от Resistor – конец. В отличии от переменного резистора в привычном понимании, варистор обладает немного другими свойствами и путать их не стоит.

Корпус варистора обычно выполняется в виде дисков и таблеток. Но так же существуют корпуса стержнем и с подвижные контактом (подстроечные варисторы).

Варистор имеет условно графическое обозначение (УГО) как у резистора, но с наклонной чертой и буквой U. Буква U на УГО указывает на то, что сопротивление этого элемента цепи зависит от напряжения. На схемах и платах обозначается двумя буквами RU и цифрой (порядковый номер на схеме). А вот так выглядит нелинейная симметричная вольт-амперная характеристика варистора.

Нужны варисторы для защиты цепей от перенапряжения. В электронике и низковольтных сетях они служат для защиты от статического электричества. Варисторы можно найти почти во всех электронных устройствах – от блоков питания до электронного пускорегулирующего аппарата светильника люминесцентных ламп. Есть варисторы и в smd варианте, они очень похожи на диоды и сложно отличаемы в схемах.

Как работает варистор?

Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.

Читайте также:  Принцип работы АВР 10 кв

Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.

Как говорилось выше, варистор подключается параллельно нагрузке:

  • В цепях переменного тока – фаза – фаза, фаза – ноль;
  • В цепях постоянного тока – плюс и минус.

Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:


Характеристики и параметры варисторов

  • Классификационное напряжение (Varistor Voltage) – это величина напряжения, при котором ток в 1 мА протекает через варистор;
  • Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms) – Это среднеквадратичное значение переменного напряжения (rms) в вольтах. Это та величина, при которой варистор “открывается” и понижается его сопротивление, тем самым он начинает выполнять свою задачу;
  • Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC) – Варистор можно использовать в цепях постоянного тока, этот параметр показывает напряжение “открытия”, но уже для постоянного напряжения. Указывается в вольтах. Обычно выше, чем величина для переменных цепей;
  • Максимальное напряжение ограничения (Maximum Clamping Voltage) – максимальное напряжение в вольтах, которое может выдержать корпус варистора без выхода из строя. Обычно указывается для конкретной величины тока;
  • Максимальная поглощаемая энергия – указывается в джоулях (Дж). Величина импульса, которую может рассеять варистор, не выходя из строя;
  • Время срабатывания – обычны указывается в наносекундах (нс). Это время, которое требуется варистору для изменения величины сопротивления от очень высокого, до очень низкого;
  • Допустимое отклонение (Varistor Voltage Tolerance) – это допустимое отклонение квалификационного напряжения варистора, указывается оно в процентах (%). Это фиксированные величины ±5%, ±10%, ±20% и т.д. В импортных варисторах величина отклонения, зашифрованна в определенную букву и указывается в маркировке варистора, каждая фирма может использовать свои маркировки. К примеру, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%.

Подбор варисторов осуществляется по специальным справочникам на основе вышеописанных параметров. Узнаем значения своей цепи и защищаемого оборудования. На основе этого выбираем варистор, который нужно ставить.

Маркировка варисторов

Обычно на корпусе варистора написана очень длинна маркировка, сейчас на примере 20D471K расшифруем маркировку и узнаем его характеристики.

  1. 20D – это диаметр варистора, в данном случае 20мм. Чем больше диаметр – тем больше энергии может рассеять варистор. По данному параметру можно косвенно судить о максимальной энергии, которую он может поглотить. Чем больше – тем лучше.
  2. 47 – Классификационное напряжение варистора, 470 вольт.
  3. 1K – допустимое отклонение квалификационного напряжения варистора, как было указано выше, K – это ±10%.

Обычно у производителей маркировки отличаются друг от друга, но незначительно. Примеры маркировки этого варистора, но от разных производителей: Epcos – S20K300, Fenghua – FNR-20K471, TVR -TVR20D471, CNR – CNR20D471, JVR – JVR-20N471K.

Как видим, у фирмы Epcos маркировка показывает на число 300, это уже не классификационное напряжение, а максимально допустимое переменное напряжение. В любом случае не рекомендуется гадать самому с маркировкой, если есть возможность, то лучше воспользоваться поисковиками либо справочником и получить всю подробнейшую информацию о нужном вам варисторе.

Заключение

Варистор – это достаточно надежный и дешевый компонент, такой себе простак и универсал. Может работать в разных условиях (переменные и постоянные цепи, высокие частоты), выдерживать большие перегрузки. Он нашел применение во всех нишах связанных с электричеством и не только как защитник от перенапряжения. Варистор используют как: регуляторы и стабилизаторы, в качестве ограничителей перенапряжения. Из недостатков: высокий шум на низких частотах, так же из-за внешних условий и старения, он может изменять свои параметры.

Что такое варистор и для чего он нужен?

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U. Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA.

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Устройство

Варисторы устроены достаточно просто — внутри есть кристалл полупроводникового материала, чаще всего это Оксид Цинка (ZiO) или Карбид Кремния (SiC). Прессованный порошок этих материалов подвергают высокотемпературной обработке (запекают) и покрывают диэлектрической оболочкой. Встречаются либо в исполнении с аксиальными выводами, для монтажа в отверстия на печатной плате, а также в SMD-корпусе.

На рисунке ниже наглядно изображено внутреннее устройство варистора:

Основные параметры

Чтобы правильно подобрать варистор, нужно знать его основные технические характеристики:

  1. Классификационное напряжение, может обозначаться как Un. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА, при дальнейшем превышении ток лавинообразно увеличивается. Именно этот параметр указывают в маркировке варистора.
  2. Номинальная рассеиваемая мощность P. Определяет, сколько может рассеять элемент с сохранением своих характеристик.
  3. Максимальная энергия одиночного импульса W. Измеряется в Джоулях.
  4. Максимальный ток Ipp импульса. При том что фронт нарастает в течении 8 мкс, а общая его длительность — 20 мкс.
  5. Емкость в закрытом состоянии — Co. Так как в закрытом состоянии варистор представляет собой подобие конденсатора, ведь его электроды разделены непроводящим материалом, то у него есть определенная емкость. Это важно, когда устройство применяется в высокочастотных цепях.

Также выделяют и два вида напряжений:

— максимальное действующее или среднеквадратичное переменное;

  • Um= — максимальное постоянное.
  • Маркировка и выбор варистора

    На практике, например, при ремонте электронного устройства приходится работать с маркировкой варистора, обычно она выполнена в виде:

    20D 471K

    Что это такое и как понять? Первые символы 20D — это диаметр. Чем он больше и чем толще — тем большую энергию может рассеять варистор. Далее 471 — это классификационное напряжение.

    Могут присутствовать и другие дополнительные символы, обычно указывают на производителя или особенность компонента.

    Теперь давайте разберемся как правильно выбрать варистор, чтобы он верно выполнял свою функцию. Чтобы подобрать компонент, нужно знать в цепи с каким напряжением и родом тока он будет работать. Например, можно предположить, что для защиты устройств, работающих в цепи 220В нужно применять варистор с классификационным напряжением немного выше (чтобы срабатывал при значительных превышениях номинала), то есть 250-260В. Это в корне не верно.

    Читайте также:  Асинхронный генератор принцип работы и устройство

    Дело в том, что в цепях переменного тока 220В — это действующее значение. Если не углубляться в подробности, то амплитуда синусоидального сигнала в корень из 2 раз больше чем действующее значение, то есть в 1,41 раза. В результате амплитудное напряжение в наших розетках равняется 300-310 В.

    Где 1,1 – коэффициент запаса.

    При таких расчетах элемент начнет срабатывание при скачке действующего напряжения больше 240 Вольт, значит его классификационное напряжение должно быть не менее 370 Вольт.

    Ниже приведены типовые номиналы варисторов для сетей переменного тока с напряжением в:

    120)– 271k;
    200В (180

    220) – 431k;
    240В (210

    250) – 471k;
    240В (240

    Применение в быту

    Назначение варисторов — защита цепи при импульсах и перенапряжениях на линии. Это свойство позволило рассматриваемым элементам найти свое применение в качестве защиты:

    • линий связи;
    • информационных входов электронных устройств;
    • силовых цепей.

    В большинстве дешевых блоков питания не устанавливают никаких защит. А вот в хороших моделях по входу устанавливают варисторы.

    Кроме того, все знают, что компьютер нужно подключать к питанию через специальный удлинитель с кнопкой — сетевой фильтр. Он не только фильтрует помехи, в схемах нормальных фильтров также устанавливают варисторы.

    Часто электрики рекомендуют защитить китайские светодиодные лампы, установив варистор параллельно патрону. Также защищают и другие устройства, некоторые монтируют варистор в розетку или в вилку, чтобы обезопасить подключаемую технику.

    Чтобы защитить всю квартиру — вы можете установить варистор на дин-рейку, в хороших устройствах в корпусе расположены настоящие мощные варисторы диаметром с кулак. Примером такого устройства является ОИН-1, который изображен на фото ниже:

    В заключение хотелось бы отметить, что назначение варистора – защитить какую-либо электрическую цепь. Принцип работы основан на изменении сопротивления полупроводниковой структуры под воздействием высокого напряжения. Напряжение, при котором через элемент начинает течь ток силой 1 мА называют классификационным. Это и диаметр элемента есть основными параметрами при выборе. Пожалуй, мы доступно объяснили, что такое варистор и для чего он нужен, задавайте вопросы в комментариях, если вам что-то непонятно.

    Напоследок рекомендуем просмотреть полезные видео по теме статьи:

    Наверняка вы не знаете:

    Варистор. Что это такое? Принцип работы

    Резистор можно охарактеризовать как пассивный элемент электрической цепи. Резисторы используются в основном для контроля электрических параметров (напряжения и тока) в электроцепи, используя физическое свойство резистора, называемое сопротивлением.

    Существуют различные типы резисторов:

    • резисторы с постоянным сопротивлением (углеродные, пленочные, металлопленочные, проволочные)
    • резисторы с переменным сопротивлением (проволочные переменные резисторы, потенциометры, металлокерамические переменные резисторы, реостаты)
    • особый тип резисторов, например, фоторезистор, варистор и так далее.

    В этой статье подробно обсудим принцип работы варистора, схема подключения и применение варистора на практике. Но, в первую очередь мы должны знать, что же такое варистор.

    Варистор. Что это такое?

    Варистор — это особый тип резистора, сопротивление которого изменяется под действием приложенного к нему напряжения. Поэтому его еще называют вольта зависимый резистор (VDR). Это нелинейный полупроводниковый элемент получил свое название от слова переменный резистор (VARiable resistor)

    Эти варисторы используются в качестве защитного устройства для предотвращения кратковременных всплесков напряжения переходных процессов в электроцепи. По внешнему виду и размеру варистор схож с конденсатором, поэтому его часто путают с ним.

    Принцип работы варистора

    В обычном рабочем состоянии варистор имеет высокое сопротивление. Всякий раз, когда переходное напряжение резко возрастает, сопротивление варистора тут же уменьшаться. Таким образом, он начитает проводить через себя ток, снижая тем самым напряжение до безопасного уровня.

    Существуют различные типы исполнения, однако варистор на основе окиси металла является наиболее часто используемым в электронных устройствах. Как было сказано выше, основное назначение варистора в электронных схемах — защита цепи от чрезмерного всплеска напряжения переходных процессов. Эти переходные процессы обычно происходят из-за разряда статического электричества и грозовых перенапряжений.

    Принцип работы варистора можно легко понять, взглянув на кривую зависимости сопротивления от приложенного напряжения.

    На графике выше видно, что во время нормального рабочего напряжения (скажем низкого напряжения) сопротивление его очень высоко и если напряжение превышает номинальное значение варистора, то его сопротивление начинает уменьшаться.

    Вольт-амперная характеристика (ВАХ) варистора показанная на рисунке выше. Из рисунка видно, небольшое изменение напряжения вызывает значительное изменение тока.

    Уровень напряжения (классификационное напряжение), при котором ток, протекающий через варистор составляет 1 мА, является уровнем, при котором варистор переходит из непроводящего состояния в проводящее. Это происходит потому, что, всякий раз, когда приложенное напряжение превышает или равно номинальному напряжению, происходит лавинный эффект, переводящий варистор в состояние электропроводности в результате снижения сопротивления.

    Таким образом, даже, несмотря на быстрый рост малого тока утечки, напряжение будет чуть выше номинального значения. Следовательно, варистор будет регулировать напряжение переходных процессов относительно приложенного напряжения.

    Применение варистора

    На рисунке выше показаны примеры применения варистора в различных системах защиты электроснабжения. Рассмотрим каждый случай по отдельности.

    Данная схема представляет собой защиту однофазной линии питания. Если напряжение переходных процессов поступает из сети на клеммы питания устройства, то данный всплеск уменьшит сопротивление варистора и таким образом произойдет защита электрической цепи.

    Следующая схема представляет собой защиту однофазной линии с заземлением. В этом случае варистор подключен аналогично предыдущей схеме с дополнительным включением варисторов по линии заземления.

    Третья схема предназначена для защиты полупроводниковых переключателей (транзистор, тиристор, симистор), которые коммутируют индуктивную нагрузку.

    И последняя схема предназначена для защиты переключателя (контактов) от искрения при включении электродвигателя.

    Справочник по варисторам – скачать (10,0 MiB, скачано: 1 440)

    Варистор. Принцип работы и применение

    Варистор является пассивным двухвыводным, твердотельным полупроводниковым прибором, который используется для обеспечения защиты электрических и электронных схем. В отличие от плавкого предохранителя или автоматического выключателя, которые обеспечивают защиту по току, варистор обеспечивает защиту от перенапряжения с помощью стабилизации напряжения подобно стабилитрону.

    Слово «Варистор» является аббревиатурой и сочетанием слов «Varistor — variable resistor», резистор, имеющий переменное сопротивление, что в свою очередь описывает режим его работы. Его буквальный перевод с английского (Переменный Резистор) может немного ввести в заблуждения — сравнивая его с потенциометром или реостатом.

    Но, в отличие от потенциометра, сопротивление которого может быть изменено вручную, варистор меняет свое сопротивления автоматически с изменением напряжения на его контактах, что делает его сопротивление зависимым от напряжения, другими словами его можно охарактеризовать как нелинейный резистор.

    В настоящее время резистивный элемент варистора изготавливают из полупроводникового материала. Это позволяет использовать его как в цепях переменного, так и постоянного тока.


    Варистор во многом похож по размеру и внешнему виду на конденсатор и его часто путают с ним. Тем не менее, конденсатор не может подавлять скачки напряжения таким же образом, как варистор.

    Не секрет, что когда в цепи электропитания схемы какого-либо устройства возникает импульс высокого напряжения, то исход зачастую бывает плачевным. Поэтому применение варистора играет важную роль в системе защиты чувствительных электронных схем от скачков напряжения и высоковольтных переходных процессов.

    Всплески напряжения возникают в различных электрических схемах независимо от того, работают они от сети переменного или постоянного тока. Они часто возникают в самой схеме или поступают в нее от внешних источников. Высоковольтные всплески напряжения могут быстро нарастать и доходить до нескольких тысяч вольт, и именно от этих импульсов напряжения необходимо защищать электронные компоненты схемы.

    Один из самых распространенных источников подобных импульсов – индуктивный выброс, вызванный переключением катушек индуктивности, выпрямительных трансформаторов, двигателей постоянного тока, скачки напряжения от включения люминесцентных ламп и так далее.

    Форма волны переменного тока в переходном процессе

    Варисторы подключаются непосредственно к цепям электропитания (фаза — нейтраль, фаза-фаза) при работе на переменном токе, либо плюс и минус питания при работе на постоянном токе и должны быть рассчитаны на соответствующее напряжение. Варисторы также могут быть использованы для стабилизации постоянного напряжения и главным образом для защиты электронной схемы от высоких импульсов напряжения.

    Статическое сопротивление варистора

    При нормальной работе, варистор имеет очень высокое сопротивление, поэтому его работа схожа с работой стабилитрона. Однако, когда на варисторе напряжение превышает номинальное значение, его эффективное сопротивление сильно уменьшается, как показано на рисунке выше.

    Мы знаем из закона Ома, что ток и напряжение имеют прямую зависимость при постоянном сопротивлении. Отсюда следует, что ток прямо пропорционален разности потенциалов на концах резистора.

    Но ВАХ (вольт-амперная характеристика) варистора не является прямолинейной, поэтому в результате небольшого изменения напряжения происходит значительное изменение тока. Ниже приведена кривая зависимости тока от напряжения для типичного варистора:


    Мы можем видеть сверху, что варистор имеет симметричную двунаправленную характеристику, то есть варистор работает в обоих направлениях (квадрант Ι и ΙΙΙ) синусоиды, подобно работе стабилитрона.
    Когда нет всплесков напряжения, в квадранте IV наблюдается постоянное значение тока, это ток утечки, составляющий всего несколько мкА, протекающий через варистор.

    Из-за своего высокого сопротивления, варистор не оказывает влияние на цепь питания, пока напряжение находится на номинальном уровне. Номинальный уровень напряжения (классификационное напряжение) — это такое напряжение, которое необходимо приложить на выводы варистора, чтобы через него проходил ток в 1 мА. В свою очередь величина этого напряжения будет отличаться в зависимости от материала, из которого изготовлен варистор.

    Читайте также:  Tl431 принцип работы

    При превышении классификационного уровня напряжения, варистор совершает переход от изолирующего состояния в электропроводящее состояние. Когда импульсное напряжение, поступающее на варистор, становится больше, чем номинальное значение, его сопротивление резко снижается за счет лавинного эффекта в полупроводниковом материале. При этом малый ток утечки, протекающий через варистор, быстро возрастает, но в тоже время напряжение на нем остается на уровне чуть выше напряжения самого варистора. Другими словами, варистор стабилизирует напряжение на самом себе путем пропускания через себя повышенного значения тока, которое может достигать не одну сотню ампер.

    Емкость варистора

    Поскольку варистор, подключаясь к обоим контактам питания, ведет себя как диэлектрик, то при нормальном напряжении он работает скорее как конденсатор, а не как резистор. Каждый полупроводниковый варистор имеет определенную емкость, которая прямо пропорциональна его площади и обратно пропорциональна его толщине.

    При применении в цепях постоянного тока, емкость варистора остается более-менее постоянной при условии, что приложенное напряжение не больше номинального, и его емкость резко снижается при превышении номинального значения напряжения. Что касается схем на переменном токе, то его емкость может влиять на стабильность работы устройств.

    Подбор варистора

    Чтобы для конкретного устройства правильно подобрать варистор, желательно знать сопротивление источника и мощность импульсов переходных процессов. Варисторы на основе оксидов металлов имеют широкий диапазон рабочего напряжения, начиная от 10 вольт и заканчивая свыше 1000 вольт переменного или постоянного тока. В общем необходимо знать на каком уровне напряжения нужно защитить схему электроприбора и взять варистор с небольшим запасом, например для сети 230 вольт подойдет варистор на 260 вольт.

    Максимальное значение тока (пиковый ток) на которое должен быть рассчитан варистор, определяется длительностью и количеством повторений всплесков напряжения. Если варистор установлен с малым пиковым током, то это может привести к его перегреву и выходу из строя. Таким образом, для безотказной работы, варистор должен быстро рассеивать поглощенную им энергию переходного импульса и безопасно возвращаться в исходное состояние.

    Варианты подключения варистора

    Подведем итог

    В данной статье мы узнали, что варистор это тип полупроводникового резистора, имеющий нелинейную ВАХ. Он является надежным и простым средством обеспечения защиты от перегрузки и скачков напряжения. Варисторы применяются в основном в чувствительных электронных схемах. В случае если питающее напряжение неожиданно превышает нормальное значение, варистор защищает схему за счет резкого снижения собственного сопротивления, шунтируя цепь питания и пропуская через себя пиковый ток, доходящий порой до сотен ампер.

    Классификационное напряжение варистора — это напряжение на самом варисторе при протекании через него тока в 1 мА. Эффективность работы варистора в электронной или электрической цепи зависит от правильного его выбора в отношении напряжения, тока и силы энергии всплесков.

    Скачать справочные материалы по зарубежным варисторам (3,0 MiB, скачано: 4 750)

    Как проверить варистор мультиметром — пошаговая инструкция

    От перепадов напряжения не застрахована ни одна электросеть, есть множество причин вызывающих это явление, начиная от перегрузки и заканчивая перекосом фаз. Такие броски способны вывести из строя бытовую технику, поэтому практически все современные электронные устройства имеют защиту. Если после очередного перепада в БП какого-нибудь прибора сгорел предохранитель, произведя его замену, не спешите включать технику. На всякий случай проверьте варистор на исправность тестером или мультиметром.

    Прежде, чем перейти к тестированию, рекомендуем ознакомиться с кратким описанием варистора, особенностями его работы и характеристиками. Эта информация может быть полезной при поиске аналога, взамен вышедшего из строя элемента.

    Внешний вид варисторов

    Характеристики

    Варистор представляет собой полупроводниковый резистор с нелинейной вольт-амперной характеристикой, ее график показан на рисунке 2.

    Рис. 2. Типичные вольт-амперные характеристики: А – варистора, В – обычного резистора

    Как видно из графика, когда напряжение на полупроводнике достигает порогового значения, резко увеличивается сила тока, что вызвано понижением сопротивления. Эта характеристика позволяет использовать варистор в качестве защиты от кратковременных скачков напряжения.

    Принцип действия, обозначение на схеме, варианты применения

    Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.

    Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

    Обозначения:

    • А – два металлических электрода в форме диска;
    • В – вкрапления оксида цинка (размер кристаллов не соблюден);
    • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
    • D – керамический изолятор;
    • Е – выводы.

    Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

    Содержание оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.

    Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

    Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

    Пример реализации защиты

    На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).

    Рисунок 4. Варистор в блоке питания АТХ

    Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

    • первые три буквы обозначают тип, в нашем случае это серия TVR;
    • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
    • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10 y , в нашем случае это 47*10 1 , то есть 470 вольт;
    • последняя буква указывает класс точности, «К» соответствует 10%.

    Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

    Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

    Определяем работоспособность элемента (пошаговая инструкция)

    Для данной операции нам потребуются следующие инструменты:

    • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
    • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
    • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
    • Канифоль и припой.
    • Мультиметр или другой прибор, позволяющий измерить сопротивление.

    Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

    1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
    2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
    3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой. Варистор в силовой части БП
    4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей. Варистор со следами повреждений
    5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
    6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору. Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым
    7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

    Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

    1. Произведя замену (если в этом есть необходимость), собираем устройство.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: