Принцип работы АВР 10 кв

Автоматическое включение резервного питания (АВР) в распределительных сетях

Автоматическое включение резерва (АВР) предназначено для переключения потребителей с поврежденного источника питания на исправный, резервный. В системах сельского электроснабжения устройства АВР применяют на двухтрансформаторных подстанциях 35 – 110/10 кВ (местные АВР) и на линиях 10 кВ с двусторонним питанием, работающих в разомкнутом режиме (сетевые АВР).

В связи с появлением потребителей первой категории по надежности электроснабжения (животноводческие комплексы) начинают внедрять устройства АВР на ТП-10/0,38 кВ, на линиях 0,38 кВ и на резервных дизельных электростанциях.

К схемам АВР предъявляются следующие основные требования:

• АВР должно обеспечиваться при непредусмотренном прекращении электроснабжения но любой причине и при наличии напряжения на резервном источнике питания;

• АВР должно осуществляться с минимально возможным временем действия;

• АВР должно быть однократным;

• АВР должно обеспечивать быстрое отключение резервного источника при включении на устойчивое к.з., для этого рекомендуется выполнять ускорение защиты после АВР (аналогично тому, как это делается после АПВ);

• в схеме АВР должен быть предусмотрен контроль исправности цепи включения резервного оборудования.

Для пуска АВР при исчезновении напряжения основного источника используется реле минимального напряжения . В некоторых случаях роль пускового органа выполняет реле времени с возвращающимся якорем (в нормальном режиме реле времени находится постоянно под напряжением и якорь притянут).

Уставка срабатывания этих реле обычно, если не имеется конкретных данных, выбирается из условия

Время срабатывания пускового органа устройства АВР (tср.АВР) выбирается по следующим условиям: • по отстройке от времени срабатывания тех защит, в зоне действия которых повреждения могут вызвать уменьшение напряжения ниже принятого по условию

где tс.з — наибольшее время срабатывания указанных защит;

Δt — ступень селективности, принимаемая равной 0,6 с при использовании реле времени со шкалой до 9 с и равной 1,5…2 с со шкалой до 20 с;

• по согласованию действия АВР с другими устройствами автоматики (например, АПВ линии, по которой осуществляется подача энергии от основного источника питания)

где tс.з.л — наибольшее время действия защиты линии (элемента системы электроснабжения), передающей энергию потребителям, для которых осуществляется АВР;

t1АПВ — время цикла неуспешного АПВ этой линии;

tзап — запас по времени, принимаемый равным 2 – 3,5 с.

В сельских электрических сетях применяются сетевые АВР , которые обеспечивают резервирование потребителей, подключенных к линиям с двусторонним питанием, работающих в разомкнутом (условно-замкнутом) режиме (рис. 1, а).

Сетевые АВР представляют собой комплекс аппаратов, в который входят:

• само устройство АВР, переключающее питание сети на резервный источник путем включения выключателя пункта АВР (3В, рис. 1), который отключен в нормальном режиме работы схемы;

• устройства, обеспечивающие при необходимости автоматическую перестройку релейной защиты перед изменением режима работы сети при АВР;

• устройство делительной автоматики минимального напряжения (действует па отключение 1В и 5В, рис. 1,а), которое предотвращает подачу напряжения от резервного источника на поврежденный рабочий источник питания (на рабочую линию, трансформатор и т. п.), а также на некоторые другие устройства.

Рис. 1 Схема сетевого АВР для сельских сетей 10 кВ (на выключателе с пружинным приводом): a — поясняющая первичная схема сети 10 кВ; б — схема цепи напряжения пускового органа АВР; в — схема АВР и управления аыключателя 3 (пункта АВР).

На рисунке 1, в показана схема сетевого АВР для выключателей с пружинным приводом, наиболее распространенным в сельских сетях 10 кВ. На пункте АВР (рис. 1,а) установлена ячейка (шкаф) КРУН с выключателем 3В, оборудованным сетевым АВР и релейной защитой.

Действие пускового органа АВР обеспечивается от трансформаторов напряжения ТН1 и ТН2 (по два или по одному ТН с каждой стороны), которые являются источниками оперативного тока для всех устройств пункта АВР. При этом питание шинок управления 1ШУ и 2ШУ (рис. 1,в) осуществляется либо от ТН1, либо от ТН2 с автоматическим переключением на ТН неповрежденной линии.

При исчезновении питания, например со стороны подстанции А, срабатывают реле напряжения 1РН, 2РН. При наличии напряжения со стороны подстанции Б запускается реле времени 1РВ и через заданное время замыкает контакт 1РВ в цепи электромагнита включения ЭВ выключателя 3В.

Если пружины привода заведены (контакт КГП1 замкнут), выключатель включается. При успешном АВР через замкнувшийся вспомогательный контакт 3ВЗ включается двигатель и заводит пружины привода. При неуспешном АВР (включение на к.з. с последующим отключением от защиты) контакт ЗВЗ остается разомкнутым и пружины не заведены (продолжительность полного завода пружин 6. 20 с). Этим обеспечивается однократность АВР.

В данном случае для подготовки привода к включению необходимо вручную перевести устройство 2ОУ в положение 2—3. При неисправностях в цепях TН1 или ТН2 отключается соответствующий автомат АВ н своим вспомогательным контактом АВ1 или АВ2 выводит из действия устройство АВР для работы в сторону поврежденного ТН.

Если уставки tср.АВР при исчезновении напряжения со стороны источников А и Б существенно отличаются, то устанавливают второе реле 2РВ (на схеме не показано), так что реле 1РВ запускается по цепи 1PH, 2РН, АВ1, а реле 2РВ — по цепи 3РН, 4РН, АВ2.

Работу схемы АВР трансформаторов проверяют на стенде (рис.2).

Рис. 2. Схема устройства АВР (включение секционного выключателя) на двухтрансформаторной подстанции.

Принципиальная схема АВР, показанная на рисунке 2, позволяет при помощи секционного выключателя СВ автоматически подавать питание на шины секции I или II при аварийном отключении трансформаторов Т1 или Т2.

Рассмотрим работу схемы при включении резервного питания на шины секции I.

Потребители секции I нормально питаются от трансформатора T1, а автоматическое резервирование их питания осуществляется включением СВ.

Автоматическое резервное питание подается при исчезновении напряжения на шинах секции I вследствие:

• отключения источника питания или линии электропередачи со стороны T1;

• короткого замыкания внутри трансформатора и на шинах секции I;

• непреднамеренного отключения трансформатора T1.

Схема АВР работает только при замкнутых контактах переключателя П. Обмотка реле однократного включения устройства АВР (РОВ) находится под напряжением и его контакт замкнут до тех пор, пока включен выключатель 1В1.

При исчезновении напряжения на шинах секции I реле минимального напряжения замыкает свои размыкающие контакты. Через его замкнутые контакты реле времени 1РВ получает питание и через определенную выдержку времени подает импульс на отключение трансформатора T1 (выключателей 1В и 1В1).

Обычно реле времени действует на промежуточное реле, которое своими контактами включает оперативные цепи выключателя. После отключения выключателей обмотка РОВ обесточивается, но возврат его контактов в исходное положение происходит с некоторой выдержкой времени. Время возврата немного больше времени включения выключателя СВ. Поэтому импульс на включение СВ успевает пройти через контакт РОВ и включить его, благодаря чему шины секции I получают питание от трансформатора Т2. После размыкания контакта РОВ цепь импульса на включение выключателя разрывается, чем обеспечивается однократность действия устройства АВР.

Для исключения ложных действий устройств АВР при сгорании предохранителей в цепи трансформатора напряжения ТН ставят два реле минимального напряжения РН с последовательным соединением их контактов. Кроме того, можно включить последовательно еще одно реле напряжения, которое питается от резервного источника и разрешает действовать устройству АВР при исчезновении напряжения на основной секции для данных потребителей только при наличии напряжения на шипах резервного питания.

Структурная схема АВР на распределительных подстанциях 6(10) кВ

В данной статье речь пойдет о реализации автоматического ввода резерва (АВР) на распределительных подстанциях напряжением 6(10) кВ.

Требования к устройствам АВР на подстанциях распределительных сетей согласно ПУЭ рассмотрено в статье: «Требования к устройствам АВР в сети 6-35 кВ».

Принцип действия АВР секционного выключателя QЗ такой подстанции в виде последовательных операций представлен на рис. 1.

Пусковой орган напряжения АВР срабатывает, если автоматический выключатель трансформатора напряжения секции SF1 ТН1(2) включен, тележка ТН1(2) вкачена, напряжения Uаb и Ubс ниже уставки срабатывания и имеется нормальное напряжение на соседней секции. По истечении уставки срабатывания АВР по времени tАВР если переключатель АВР SA1 включен, отключается выключатель ввода секции, потерявшей питание.

Включение секционного выключателя выполняется по факту отключения выключателя ввода через орган однократного действия. Для обеспечения однократности обычно применяют схему, в которой команда «включить» подается через последовательно соединенные размыкающий вспомогательный контакт выключателя ввода и замыкающий с выдержкой времени на отпадание контакт реле положения «включено» KQC выключателя ввода.

Эта цепь дает импульсную команду на включение Q3, длительность которой определяется временем отпадания реле KQC. Это время регулируется при наладке реле KQC и принимается больше времени включения выключателя QЗ при пониженном напряжении оперативного тока с некоторым запасом, обычно оно составляет 0,5 — 0,6 с.

Таким образом, схема АВР состоит как бы из двух частей: пускового органа АВР по напряжению (иногда он дополняется пусковым органом по обрыву фаз питающей линии) и так называемого «быстрого» АВР, когда за отключением выключателя рабочего питания мгновенно следует включение выключателя резервного питания.

«Быстрое» АВР (не путать с быстродействующим!) может сработать самостоятельно, без пусковою органа АВР, например при самопроизвольном отключении выключателя рабочею питания или при его отключении защитой питающего рабочий ввод трансформатора.

В схемах Теплоэлектропроекта (рис.1б) вместо двухрелейного пускового органа минимального напряжения (Uаb

Однако на подстанциях потребителей, получающих питание через длинные воздушные линии (особенно напряжением 6 и 10 кВ), где обрыв фазы линии значительно более вероятен, чем перегорание предохранителя на стороне ВН ТН1(2), часто делают наоборот дополняют двухрелейный пусковой орган АВР пуском по напряжению обратной последовательности с контролем его отсутствия на резервном источнике питания.

В современных схемах выполняют запрет АВР при КЗ на секции, для этого в схеме защиты ввода устанавливают дополнительное промежуточное реле KL, которое срабатывает от контактов выходного реле защиты РЗ, самоудерживается и остается притянутым в течение времени возврата реле KQC (рис. 1в). Размыкающий контакт KL включают последовательно в цепь однократности, что и обеспечивает запрет АВР при срабатывании зашиты ввода.

Более подробно реализация АВР на распределительных подстанциях с использованием электромеханических реле рассмотрена в статье: «Схема местного устройства АВР двухстороннего действия на секционном выключателе 6 (10) кВ в формате dwg».

  1. А.В. Беляев. Защита, автоматика и управление на электростанциях малой энергетики. Часть 1.
  2. Байтер И. И. Релейная защита и автоматика питающих элементов собственных нужд тепловых электростанций. М.: Энергия, 1975.
Читайте также:  Принцип действия гидроэлектростанции

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

В данной статье речь пойдет о реализации автоматического ввода резерва (АВР) на электростанциях.

Добрый день! В данной статье, речь пойдет о схеме подключения реверсивного электропривода типа BLE 230.

Рассмотрим в этой статье принцип выполнения схемы оперативной блокировки разъединителей.

Представляю вашему вниманию схему щита постоянного тока (ЩПТ) распределительной подстанции.

Устройство центральной сигнализации SACO (фирмы «АВВ») предназначено для обработки дискретных и.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Назначение, устройство и принцип работы АВР

АВР — автоматическое включение резервного питания, предназначенное для восстановления электроснабжения потребителей. Происходит это за счет подключения запасного источника питания при отключении основного электрооборудования. Таким образом, если происходит перерыв в этом процессе, то АВР обеспечивает цепь электропитанием. Для моментального ввода существует источник бесперебойного электроснабжения.

Назначение оборудования

Расшифровка системы АВР — автоматический ввод резерв — наилучшим образом объясняет назначение оборудования. Иногда его называют устройством автоматического включения резерва. Это определение относится к переключению основного электрооборудования на запасной генератор, что происходит при аварийном отключении главной сети.

По своему назначению ввод резерва схож с обеспечением бесперебойного электроснабжения. Вся работа системы осуществляется полностью в автоматическом режиме без участия человека. В крупных подстанциях всегда существует два ввода на две автономные секции распределительного устройства.

Согласно требованию правил устройства электроустановок, в этом случае обязательно присутствие АВР для снабжения резервным питанием на 2 ввода. Например, при нарушении работы основного электроснабжения дополнительное оборудование включится автоматически. Визуально такой момент очень трудно заметить, так как высока скорость переключения.

Устройство и принцип работы

Независимо от устройства автоматического включения резерва, принципиальной его задачей считается наблюдение за параметрами электрической сети. Для этого могут использоваться реле контроля напряжения или блоки, оборудованные микропроцессорами. Существуют два основных вида устройства:

  1. Одностороннее (ОАВР) — один ввод работает в качестве основного и применяется, пока в электрической магистрали не возникнут проблемы. Другой выполняет роль запасного и включается в аварийных ситуациях.
  2. Двухстороннее (ДАВР) — оба ввода выполняют основную работу и используются, как резерв.

Сама конструкция представляет собой шкаф или щит АВР с контакторами или автоматами. Часто на практике используются конструкции с восстановлением, то есть как только в основной сети возвращается подача электроэнергии, то резервное питание отключается.

В случае падения напряжения на контролируемом участке цепи, реле подает сигнал на схему АВР. Отсутствие в сети одного напряжения недостаточно, чтобы сработало устройство переключения. Для этого необходимо присутствие еще ряда условий:

  1. На проверяемом участке не должно быть короткого замыкания, так как включение резервного питания будет невозможно и недопустимо.
  2. Выключатель ввода обязательно должен быть включен, чтобы при отсутствии напряжения не произошло случайного запуска АВР.
  3. На участке, от которого будет происходить питание резерва, обязательно наличие напряжения.

Когда все условия будут соблюдены, включатель резерва подает сигнал на отключение вводного выключателя обесточенной сети и на включение АВР. Алгоритм действий происходит строго в этом порядке, то есть без отключения ввода резервное питание никогда не включится.

Комплектация шкафа и щита

Комплектация и правила эксплуатации шкафов ввода резервного питания типа АВР-РН, АВРПА, АВРР практически ничем не отличается друг от друга. Устройство представляет собой сварное изделие прямоугольной формы с двумя дверями.

Внутри вмонтированы две панели, на которых установлены силовые и управляющие устройства. При эксплуатации в сетях с током до 100 А применяются шкафы, изготовленные на базе пускателей ПМ 12 с серебряными контактами.

При силе тока свыше 100 А монтируются вакуумные контакторы. Все соединения входных и выходных цепей осуществляются инструментом, обеспечивающим стойкий контакт. В шкаф устанавливаются зажимы, рассчитанные на подсоединение многожильных медных и бронированных с наконечниками проводов.

Устанавливаемые пускатели должны быть рассчитаны на 300 тыс. срабатываний, а время отключения автоматов при коротком замыкания не превышает 0,05 сек. На всех приборах должны быть соответствующие обозначения, а дополнительно под ними устанавливаются бирки с пояснением.

Шкафы обычно имеют два кабельных ввода: для питающего и резервного провода, которые подключаются к штыревым колодкам. В силовую часть входят:

  • силовая колодка ввода;
  • выводные колодки, соединенные с соответствующими автоматами;
  • два контактора ввода;
  • два трансформатора напряжения.

Питание световых индикаторов осуществляется напряжением 36 В. Установленные реле времени АВР обеспечивают трансформаторы бесперебойным снабжением электроэнергией. В систему управления оборудованием входят автоматические выключатели, сигнальные лампы и реле контроля фаз. Собранный шкаф может эксплуатироваться в условиях, исключающих атмосферные осадки и при температуре от — 45 °C до + 45 °C.

Применение резервного питания

Длительное отсутствие электроэнергии доставляет много неудобств для человека, кроме того, может привести к угрозе жизни и безопасности людей. Обеспечить бесперебойное электроснабжение можно от двух независимых источников питания, что применяется для потребителей первой категории. Особая группа первой категории снабжается электроэнергией от трех взаимно резервирующих источников питания. Такие схемы имеют ряд недостатков:

  1. Значение токов короткого замыкания гораздо выше, чем при раздельном электроснабжении потребителей.
  2. Происходят большие потери электроэнергии в питающих трансформаторах.
  3. Сложная защитная схема.
  4. Очень трудно вести учет перетоков мощности.
  5. Иногда тяжело осуществить параллельную работу источников питания из-за наличия ранее установленной релейной защиты.

Поэтому существует необходимость в раздельных источниках питания с наличием быстрого восстановления электроэнергии. Именно эту задачу выполняет АВР, который подключает отдельную сеть или другой источник питания (генератор, аккумуляторную батарею). Щиты резервного включения широко применяются на предприятиях транспорта, связи, при строительстве жилищных комплексов и в других областях промышленности.

Обычно на входе в здание устанавливается шкаф ВРУ с АВР, то есть электрики комплектуют вводно-распределительное устройство блоком резервного питания. Можно такое оборудование устанавливать и отдельными блоками, которые собраны в заводских условиях.

Организация АВР в загородном доме

Для организации АВР загородного дома или беспрерывной работы насосов в качестве запасного источника питания можно использовать генератор. Он позволит на длительный период обеспечить электроэнергией потребителей, пока не восстановят основное электроснабжение.

В зависимости от типа генератора, такое устройство используется как в однофазных, так и трехфазных сетях. Чтобы срабатывание АВР происходило в автоматическом режиме, генератор должен быть снабжен стартером.

При монтаже системы необходимо подключить специальный блок автоматики, который производит запуск генератора во время отключения электроэнергии и его остановку при восстановлении электроснабжения. Блок совместим с любым видом двигателей и имеет три положения: «Запуск», «Включен», «Стоп».

Устройство снабжено подробным описанием, которое позволяет собрать АВР полностью своими руками. Правда, в зимний период двигатель внутреннего сгорания предварительно следует прогреть. Блок автоматики в своей программе подразумевает и такую функцию.

Для обустройства АВР загородного дома можно воспользоваться автомобильным аккумулятором. Помимо него, следует приобрести инвертор для преобразования 12 В постоянного напряжения в 220 В переменного.

Следует учитывать, что мощности такого устройства хватит только для освещения. Для увеличения емкости можно подключить параллельно несколько батарей. Запуск системы осуществляется с помощью специального переключателя, который устанавливается в основную сеть.


Что такое автоматический ввод резерва и как работает АВР?

Нельзя гарантировать бесперебойную работу энергосистемы, поскольку всегда существует вероятность воздействия на нее техногенных или природных внешних факторов. Именно поэтому токоприемники, относящиеся к первой и второй категории надежности, положено подключать к двум или более независимым источникам энергоснабжения. Для переключения нагрузок между основными и резервными питаниями используются системы АВР. Подробная информация о них приведена ниже.

Что такое АВР и его назначение?

В подавляющем большинстве случаев такие системы относятся к электрощитовым вводно-коммутационным распредустройствам. Их основная цель — оперативное подключение нагрузки на резервный ввод, в случае возникновения проблем с энергоснабжением потребителя от основного источника питания. Чтобы обеспечить автоматическое переключение на работу в аварийном режиме, система должна отслеживать напряжение питающих вводов и ток нагрузки.

Типовой щит АВР

Расшифровка аббревиатуры АВР

Данное сокращение это первые буквы полного названия системы – Автоматический Ввод Резерва, как нельзя лучше объясняющее ее назначение. Иногда можно услышать расшифровку «Автоматическое Включение Резерва», такое определение не совсем корректное, поскольку под ним подразумевается запуск генератора в качестве резервного источника, что является частным случаем.

Классификация

Вне зависимости от исполнения, блоки, шкафы или АВР принято классифицировать по следующим характеристикам:

  • Количество резервных секций. На практике чаще всего встречаются АВР на два питающих ввода, но чтобы обеспечить высокую надежность электроснабжения, может быть задействовано и больше независимых линий. Шкаф АВР на три ввода
  • Тип сети. Большинство устройств предназначено для коммутации трехфазного питания, но встречаются и однофазные блоки АВР. Они применяются в бытовых сетях электроснабжения для запуска двигателя генератора. Применение АВР в частном доме
  • Класс напряжения. Устройства могут быть предназначены для работы в цепях до 1000 или использоваться при коммутации высоковольтных линий.
  • Мощностью коммутируемой нагрузки.
  • Время срабатывания.

Требования к АВР

В число основных требований к системам аварийного восстановления электроснабжения входит:

  • Обеспечение подачи питания потребителю электроэнергии от резервного ввода, если произошло непредвиденное прекращение работы основной линии.
  • Максимально быстрое восстановление электропитания.
  • Обязательная однократность действия. То есть, недопустимо несколько включений-отключений нагрузки из-за КЗ или по иным причинам.
  • Включение выключателя основного питания должно производиться автоматикой АВР до подачи резервного электропитания.
  • Система АВР должна контролировать цепь управления резервным оборудованием на предмет исправности.

Устройство АВР

Существует два основных типа исполнения, различающиеся приоритетом ввода:

  1. Одностороннее. В таких АВР один ввод играет роль рабочего, то есть используется, пока в линии не возникнут проблемы. Второй – является резервным, и подключается, когда в этом возникает необходимость.
  2. Двухстороннее. В этом случае нет разделения на рабочую и резервную секцию, поскольку оба ввода имеют одинаковый приоритет.
Читайте также:  Принцип работы термоэлектрического холодильника

В первом случае большинство систем имеют функцию, позволяющую переключиться на рабочий режим питания, как только в главном вводе произойдет восстановление напряжения. Двухсторонние АВР в подобной функции не нуждаются, поскольку не имеет значения от какой линии запитывается нагрузка.

Примеры схем двухсторонней и односторонней реализации будут приведены ниже, в отдельном разделе.

Принцип работы автоматического ввода резерва

Вне зависимости от варианта исполнения АВР в основу работы системы заложено отслеживание параметров сети. Для этой цели могут использоваться как реле контроля напряжения, так и микропроцессорные блоки управления, но принцип работы при этом остается неизменным. Рассмотрим его на примере самой простой схеме АВР для бесперебойного электроснабжения однофазного потребителя.

Рис. 4. Простая схема однофазной АВР

Обозначения:

  • N – Ноль.
  • A – Рабочая линия.
  • B – Резервное питание.
  • L – Лампа, играющая роль индикатора напряжения.
  • К1 – Катушка реле.
  • К1.1 – Контактная группа.

В штатном режиме работы напряжение подается на индикаторную лампу и катушку реле К1. В результате нормально-замкнутый и нормально-разомкнутый контакты меняют свое положение и на нагрузку подается питание с линии А (основной). Как только напряжение в на входе А пропадает, лампочка гаснет, катушка реле перестает насыщаться, и положение контактов возвращается в исходное (так, как показано на рисунке). Эти действия приводят к включению нагрузки в линию В.

Как только на основном вводе восстанавливается напряжение, реле К1 производит перекоммутацию на источник А. Исходя из принципа работы, данную схему можно отнести к одностороннему исполнению с наличием возвратной функции.

Представленная на рисунке 4 схема сильно упрощена, для лучшего понимания происходящих в ней процессов, не рекомендуем брать ее за основу для контроллера АВР.

Варианты схем для реализации АВР с описанием

Приведем несколько рабочих примеров, которые можно успешно применить при создании щита автоматического запуска. Начнем с простых схем для бесперебойной системы электроснабжения жилого дома.

Простые

Ниже представлен вариант схемы АВР, переключающей подачу электричества в дом с основной линии на генератор. В отличие от приведенного выше примера, здесь предусмотрена защита от короткого замыкания, а также электрическая и механическая блокировка, исключающая одновременную работу от двух вводов.

Схема АВР для дома

Обозначения:

  • AB1 и AB2 – двухполюсные автоматические выключатели на основном и резервном вводе.
  • К1 и К2 – катушки контакторов.
  • К3 – контактор в роли реле напряжения.
  • K1.1, K2.1 и K3.1 – нормально-замкнутые контакты контакторов.
  • К1.2, К2.2, К3.2 и К2.3 – нормально-разомкнутые контакты.

После переводов автоматов АВ1 и АВ2 алгоритм работы блока АВР будет следующим:

  1. Штатный режим (питание от основной линии). Катушка К3 насыщается и реле напряжения срабатывает, замыкая контакт К3.2 и размыкая К3.1. В результате напряжение поступает на катушку пускателя К2, что приводит к замыканию К2.2 и К2.3 и размыканию К2.1. Последний играет роль электрической блокировки, не допускающей подачи напряжения на катушку К1.
  2. Аварийный режим. Как только напряжение в главной линии исчезает или «падает» ниже допустимого предела, катушка К3 перестает насыщаться и контакты реле принимают исходную позицию (так, как показано на схеме). В результате на катушку К1 начинает поступать напряжение, что приводит к изменению положения контактов К1.1 и К1.2. Первый играет роль электрической защиты, не допуская подачи напряжения на катушку К2, второй снимает блокировку подачи питания на нагрузку.
  3. Чтобы работала механическая блокировка (на схеме отображена в виде перевернутого треугольника) необходимо использовать реверсивный пускатель, где ее наличие предполагается конструкцией электромеханического прибора.

Теперь рассмотрим два варианта простых АВР для трехфазного напряжения. В одном из них энергоснабжение будет организовано по односторонней схеме, во втором применено двухстороннее исполнение.

Рисунок 6. Пример односторонней (В) и двухсторонней (А) реализации простого трехфазного АВР

Обозначения:

  • AB1 и AB2 – трехполюсные автоматы защиты;
  • МП1 и МП2 – магнитные пускатели;
  • РН – реле напряжения;
  • мп1.1 и мп2.1 – групповые нормально-разомкнутые контакты;
  • мп1.2 и мп2.2 – нормально-замкнутые контакты;
  • рн1 и рн2 – контакты РН.

Рассмотрим схему «А», у которой два равноправных ввода. Чтобы не допустить одновременное подключение линий применяется принцип взаимной блокировки, реализованный на контакторах МП1 и МП2. От какой линии будет питаться нагрузка, определяется очередностью включения автоматов АВ1 и АВ2. Если первым включается АВ1, то срабатывает пускатель МП1, при этом разрывается контакт мп1.2, блокируя поступление напряжение на катушку МП2, а также замыкается контактная группа мп1.1, обеспечивающая подключение источника 1 к нагрузке.

При отключении источника 1 контакты пускателя ПМ1 возвращаются в исходное положение, что приводит в действие контактор ПМ2, блокирующий катушку первого пускателя и включающий подачу питания от источника 2. При этом нагрузка будет оставаться подключенной к этому вводу, даже если работоспособность источника 1 пришла в норму. Переключение источников можно делать в ручном режиме манипулируя выключателями АВ1 и АВ2.

В тех случаях, когда требуется одностороння реализация, применяется схема «В». Ее отличие заключается в том, что в цепь управления добавлено реле напряжения (РН), возвращающее подключение на основной источник 1, при восстановлении его работы. В этом случае размыкается контакт рн2, отключающий пускатель МП2 и замыкается рн1, позволяя включиться МП1.

Промышленные системы

Принцип работы промышленных систем энергообеспечения остается неизменным. Приведем в качестве примера схему типового шкафа АВР.

Схема типового промышленного шкафа АВР

Обозначения:

  • AB1, АВ2 – трехполюсные устройства защиты;
  • S1, S2 – выключатели для ручного режима;
  • КМ1, КМ2 – контакторы;
  • РКФ – реле контроля фаз;
  • L1, L2 – сигнальные лампы для индикации режима;
  • км1.1, км2.1 км1.2, км2.2 и ркф1 – нормально-разомкнутые контакты.
  • км1.3, км2.3 и ркф2 – нормально-замкнутые контакты.

Приведенная схема АВР практически идентична, той, что была представлена на рисунке 6 (А). Единственное отличие заключается в том, что в последнем случае используется специальное реле контролирующее состояние каждой фазы. Если «пропадет» одна из них или произойдет перекос напряжений, то реле переключит нагрузку на другую линию, и восстановит исходный режим при стабилизации основного источника.

АВР в высоковольтных цепях

В электрических сетях с классом напряжения более 1кВ реализация АВР более сложная, но принцип работы системы практически не меняется. Ниже в качестве примера приведен упрощенный вариант схемы понижающей ТП 110,0/10,0 киловольт.

Упрощенная схема ТП 110/10 кВ

Из приведенной схемы видно, в ней нет резервных трансформаторов. Это говорит о том, что каждая из шин (Ш1 и Ш2) подключена к своему питающему трансформатору (T1, T2), каждый из которых может на определенное время стать резервным, приняв на себя дополнительную нагрузку. В штатном режиме секционный выключатель СВ10 разомкнут. АВР контролирует работу ТП через ТН1 Ш и ТН2 Ш.

Когда перестает поступать питание на Ш1, АВР выполняет отключение выключателя В10Т1 и производит включение секционного выключателя СВ10. В результате такого действия обе секции работают от одного трансформатора. При восстановлении источника система ввод резерва перекоммутирует систему в исходное состояние.

Микропроцессорные бесконтакторные системы

Завершая тему нельзя не упомянуть о АВР с микропроцессорными блоками управления. В таких устройствах, как правило, используются полупроводниковые коммутаторы, которые более надежны, чем аппараты, выполняющие переключение с помощью контакторов.

Электронный блок АВР

Основные преимущества бесконтакторных АВР несложно перечислить:

  • Отсутствие механических контактов и всех связанных с ними проблем (залипание, пригорание и т.д.).
  • Отпадает необходимость в механической блокировке.
  • Более широкий диапазон управления параметрами срабатывания.

К числу недостатков следует отнести сложный ремонт электронных АВР. Самостоятельно реализовать схему устройства также не просто, для этого потребуются знания электротехники, электроники и программирования.

Автоматическое включение резервного питания и оборудования (АВР)

Расшифровка АВР – автоматическое включение резерва. Это устройство, являющееся составляющей релейных защит и систем автоматики, и служит для обеспечения бесперебойного питания потребителей электрической энергии.

Осуществляет перевод питания в автоматическом режиме с источника питания основного типа на резервное питание при отсутствии наличия напряжения на действующем вводе в результате возникновения аварийной ситуации или ошибочных действий,произведенных обслуживающим персоналом.

Обратное действие происходит автоматически при восстановлении подачи напряжения.

Существует три группы автоматического включения резервного питания, распределенных по области применения:

  1. АВР с явным резервированием.
  2. АВР с неявным резервированием.
  3. Групповое резервирование.Применяется двухступенчатая схема, в которую включены две последовательно соединенные основные схемы АВР, третий ввод представляет дизель-генератор, вводимый в действие при полном обесточивании обоих основных вводов.

Срабатывание схемы автоматического включения резерва происходит по всем причинам исчезновения напряжения.

АВР характеризуется однократным действием и отличается быстродействием, не должна реагировать при повреждении во вторичной цепи.

Ввод и включение АВР в работу происходит обязательно после отключения выключателя работающего устройства

АВР автоматический ввод резерва должен обладать необходимыми требованиями – это:

  1. Быстродействие включения в работу за минимально возможное время после отключения питания от основного источника напряжения.
  2. Безотказность, включение в любых условиях при исчезновении питания при любых неисправностях на питающей линии или в случае отказа силового трансформатора. Исключение составляет блокировка АВР при срабатывании дуговой защиты с целью снизить повреждения в сети от короткого замыкания.
  3. Избирательность или селективность, например, отсутствие реагирования от посадки напряжения в результате запуска мощного оборудования со стороны потребителя.
  4. Однократное действие, предотвращение нескольких включений оборудования в работу из-за не устраненных причин короткого замыкания или другой неисправности.

Принцип работы АВР

Рис №1. Принципиальная схема АВР на подстанции 35/6(10) кВ, применяемая для выполнения секционирования

Работа схемы заключается вводом в работу секционного высоковольтного масляного (элегазового или вакуумного) выключателя для подачи резервного питания на секцию, на которой пропало напряжение, с рабочей секции.

Обязательное условие рабочего состояния схемы является включенное положение переключателя АВР – П. Реле АВР однократного действия, должно постоянно находиться под напряжением, его контакты остаются замкнуты пока переключатель 1В1 во включенном состоянии. Отсутствие напряжения на высоковольтных шинах секции вызывает замыкание размыкающих контактов реле защиты от появления минимального напряжения. Статическое реле времени с часовым механизмом типа 1РВ срабатывает и через минимальную выдержку времени отправляет сигнал к отключению силового трансформатора неисправной цепи в описываемом случае – Т1.

Читайте также:  Tl431 принцип работы

Настройка элементов схемы АВР

Элементы схемы АВР настраиваются на селективность, избирательность срабатывания АВР. Селективность зависит от правильного выбора величины напряжения срабатывания пускового реле.

Пусковое напряжение должно выбираться меньшим чем остаточное напряжение в точке короткого замыкания. Отстройка срабатывания АВР при защите от короткого замыкания за измерительным трансформатором на отходящих линиях лишено смысла, в этом случае устранение неправильного срабатывания АВР, включенного по напряжению, происходит за счет выдержки времени и соответствующим выбором уставки срабатывания пускового реле.

АВР не должно срабатывать в случае просадки напряжения вызванной самозапуском оборудования.

АВР в сетях 0,4 кВ

В сетях 0,4 кВ в качестве коммутационных аппаратов необходимых для обустройства АВР используются магнитные контакторы или пускатели совместно с автоматическими выключателями, величина которых зависит от суммарной величины тока нагрузки электроприемников, запитанных от этого оборудования.

В настоящее время существует значительное количество видов устройств АВР сети 0,4 кВ, цена которых зависит от комплектации щитов автоматического включения резервного питания. Например, щит АВР – ЩАВР Б-4,5 кВт – У1 – В3 комплектуется устройствами, учитывающими общий расход электрической энергии, оборудован защитой от импульсных перенапряжений.

Рис№2. Щит автоматического ввода резерва ЩАВР-Б-4,5кВт-У1-В3, предусмотрен для монтажа в телекоммуникационных стойках

Стоимость российских образцов щитов АВР колеблется от 8000 р. до 95000 р.

Широко распространено применение (БУ АВР) блока управления автоматическим включением резерва для АВР, работающего на два ввода для одной нагрузки, где один ввод является генератором. Блок рекомендован к использованию в сетях 380/220 В.

Рис №3. БУ АВР 1.220

Оборудование предназначено для контроля за тем в каком состоянии находятся ввода, обеспечивает управление контакторами и магнитными пускателями, автоматами, укомплектованными электроприводом, осуществляет индикацию, позволяющую осуществить контроль состояния вводов и выходов. Стоимость БУВАР составляет от 6000 до 9000 руб. в зависимости от комплектации.

Рис № 4. Схема БУ АВР

Рис № 5. Шкаф АВР на 630 А, оборудованный двумя вводами на контакторах с секционированием, на базе контроллера Zelio Schneider Electric

Этот тип устройства АВР содержит функции перевода нагрузки с одного ввода 0,4 кВ на другой с выдержкой времени, устанавливаемой реле времени, после отключения напряжения, а также при появлении ассиметричного напряжения на питающих вводах оборудования.

Установка комплектуется секционным аппаратом между двумя равнозначными энергонезависимыми вводными автоматами, осуществляет перевод нагрузки на питание от резервного работающего ввода при появлении аварии на другом вводе. Автоматические выключатели марки ВА являются гарантией надежной работы оборудования.

Для чего нужен автоматический ввод резерва и как работает АВР

Назначение АВР

Назначение данной системы в электрике схоже с организацией бесперебойного питания. Главная задача автоматического ввода резервного питания — это быстрое восстановление электроснабжения без участия в этом процессе человека. На больших подстанциях всегда имеется два ввода на две, разделённые секционным выключателем, секции распределительного устройства, работающие автономно друг от друга. Согласно ПУЭ (правила устройства электроустановок) автоматическое подключение резервного питания и снабжение на 2 ввода является обязательной мерой обеспечения электричеством потребителей первой категории.

Простой пример необходимости данной системы можно привести относительно освещения какого-то важного охраняемого участка. То есть при отключении основного ввода система сама включит питание от резервного источника, при этом данный важный участок останется осветлен. Максимум что может возникнуть — это непродолжительное прекращение питания, которое визуально даже отследить тяжело. Это зависит от скорости срабатывания АВР, время включения резерва должно составлять порядка 0,3–0,8 секунд.

Как работает автоматический ввод резервного питания

Принцип действия АВР основан на контроле напряжения в цепи. Это может осуществляться с помощью любых реле напряжения либо цифровых логических блоков защиты. Однако принцип работы всё рано остаётся неизменным. Рассмотрим его на самом простом примере.

Это однолинейная схема, на которой видно, что контроль наличия напряжения осуществляется контактором КМ. Оба автомата QS1 и QS2 должны быть включены, при этом катушка КМ получит питание и будет втянута, а соответственно её замыкающий контакт в цепи основного ввода тоже замкнут и размыкающий контакт в цепи резервного ввода разомкнут. Тем самым электроснабжение потребителя осуществляется от основной сети и светятся соответствующие лампы. В случае неисправности питания по линии L12 и снижения напряжения до величины, когда контактор КМ отключится, произойдёт размыкание замыкающего контакта в основной линии и одновременно с этим контакт в цепи резервного питания линии L22 перейдёт в замкнутое состояние, тем самым подав напряжение к потребителю от резервного источника. Обратная ситуация произойдёт при возобновлении основного электроснабжения по линии L12.

На видео ниже наглядно рассмотрен принцип работы АВР в сетях 6 кВ:

Требования к системе

Основными требованиями, предъявляемыми к системам АВР являются:

  • Быстродействие.
  • Надёжность включения.
  • Подача напряжения только если на участке нет короткого замыкания, то есть обязательно должна быть блокировка при КЗ.
  • Однократность срабатывания.
  • Возможность настройки порога включения резервного электроснабжения, чтобы она не срабатывала, например, при просадках напряжения во время запуска мощных электродвигателей.
  • Срабатывание только при условии, если на резервном вводе есть электроэнергия.

Естественно, что простейшая схема на контакторах не сможет реализовать все предъявляемые требования к системе АВР. Для этого в современной электронике применяются логические системы, подающие сигнал на включение резервного источника питания только при соблюдении всех правил и блокировок. Также для дополнительной надёжности даже применяется механическая блокировка.

Классификация АВР и варианты реализации

Осуществляться резервное питание и его автоматический ввод может от отдельного генератора, аккумуляторной батареи либо отдельной линии.

В свою очередь все системы АВР по своему действию делятся на:

  1. Односторонние. Одна секция или же ввод является рабочим (основным), а второй резервный. В случае исчезновения рабочего напряжения включается резерв.
  2. Двухсторонние. Когда существуют две раздельно питающиеся секции и соответственно две линии являются рабочими, и при отключении одной любой из них, другая является резервной.

Также АВР может быть с восстановлением питания по нормальной схеме и без него. Во втором случае происходит полное погашение нерабочей сети и даже при повторном возобновлении питания схема не будет работать как прежде по двум линиям.

Особенности работы с бытовыми генераторами

Для того чтобы организовать автоматический ввод резерва в доме можно в качестве источника резервного питания использовать автономный генератор. Он даст возможность длительное время обеспечить электрической энергией целый дом, а величина подключаемой нагрузки зависит от мощности самого генератора. Вот схема подключения:

Введение генератора в качестве источника электроэнергии вместо сетевого напряжения можно практиковать в однофазной и трёхфазной сети с учетом модели генератора. Однако для того, чтобы этот процесс был полностью автоматизирован необходимо, чтобы генератор был оснащён стартером, а также понадобится специальный блок, состоящий из набора коммутационных устройств, включающих стартер только на время запуска и отключающих при возобновлении подачи сетевого напряжения. Выглядит он вот так:

Такой блок для генератора совместим с любым типом двигателя и имеет три положения: «Стоп», «Включен, «Запуск». Правда, в зимнее время необходим прогрев двигателя внутреннего сгорания, но этот блок можно запрограммировать, учитывая и эту особенность. Крепится он на дин рейку в распределительном щитке.

На видео доходчиво объясняется схема, по которой можно сделать автоматический ввод резерва для генератора своими руками:

АВР на аккумуляторах

С развитием преобразователей, трансформирующих постоянный ток в переменный, появляется возможность использовать, например, автомобильный аккумулятор в качестве источника резервного питания. Помимо аккумулятора, понадобится приобрести современный автомобильный инвертор, преобразующий 12 Вольт постоянного напряжения в 220 Вольт переменного.

Правда, этот источник вряд ли можно использовать для силовой нагрузки, но цепи освещения он может легко обеспечить стабильным напряжением на время непродолжительной аварии на линии. При этом длительность работы будет зависеть от мощности потребителей и емкости аккумуляторов.

Для увеличения ёмкости можно параллельно подключить несколько аккумуляторных батарей. Схема соединения самой системы АВР может быть реализована с помощью пускателя.

Пускатель включается в основную цепь, а при проблемах в сети его подвижная часть отпадает, тем самым его размыкающий блок-контакт, введённый в цепь аккумулятора, запускает систему автоматического электроснабжения. Этот способ менее затратный, нежели генераторный, но не способен выдавать длительное время ток для мощных бытовых приборов.

Применение логического контроллера

Для двух сетей электроснабжения трехфазным питанием применяются уже готовые блоки АВР с применением логического цифрового контролера, который может учитывать множество параметров, требуемых для создания идеальной системы. На нём имеется вся нужная маркировка и инструкция по управлению и подключению.

Правда, перед тем как подключить модуль и приобрести его, нужно задуматься, имеется ли резервный источник питания с более надёжным электроснабжением. Так как нет смысла подключать его к одной и той же системе трёхфазной сети, то есть питающейся от одного трансформатора 6/0,4 кВ.

Организация АВР в высоковольтных цепях

Для того чтобы выполнить организацию автоматического резервирования в цепях с напряжением больше 1000 Вольт, в качестве элемента, измеряющего и контролирующего сетевую энергию, служит специальный трансформатор напряжения, на вторичной обмотке которого в нормальном режиме работы 100 Вольт. Для связи его с системой АВР используется реле минимального напряжения или же реле контроля фаз. Оно реагирует не только на понижение величины сетевого напряжения, но и на исчезновение хотя бы одной фазы, например, при обрыве воздушной линии ВЛ. Здесь уже обязательно выполнение всех требований, касающихся правильному вводу АВР, а иногда даже при системе с восстановлением устанавливается выдержка времени на возврат в исходную первоначальную конфигурацию.

Также важно отметить, что в высоковольтных сетях схема автоматики АВР реализуется на электромеханических реле старого образца или современных многофункциональных микропроцессорных терминалах защиты, которые выполняют несколько функций, в том числе и АВР.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Теперь вы знаете, что такое автоматический ввод резерва, какие бывают схемы АВР и какой принцип работы у данной системы электроснабжения. Надеемся, предоставленная информация и видео уроки были для вас полезными!

Наверняка вы не знаете:

Добавить комментарий