Конструкция пускорегулирующих аппаратов для ламп ДРЛ

Как устроены и работают пускорегулирующие аппараты люминесцентных ламп

Класс газоразрядных источников света, к которому относятся люминесцентные лампы, требует использования специальной аппаратуры, осуществляющей прохождение дугового разряда внутри стеклянного герметичного корпуса.

Устройство и принцип работы люминесцентной лампы

Ее форма изготавливается в виде трубки. Она может быть прямой, изогнутой или закрученной.

Поверхность стеклянной колбы внутри покрыта слоем люминофора, а на ее концах расположены вольфрамовые нити накала. Внутренний объем герметичен, заполнен инертным газом невысокого давления с парами ртути.

Свечение люминесцентной лампы происходит за счет создания и поддержания разряда электрической дуги в инертном газе между нитями накала, которые работают по принципу термоэлектронной эмиссии. Для ее протекания через вольфрамовую проволоку пропускается электрический ток, обеспечивающий нагрев металла.

Одновременно межу нитями накала прикладывается высокая разность потенциалов, обеспечивающая энергию протекания электрической дуги между ними. Пары ртути улучшают путь тока для нее в среде инертного газа. Слой люминофора преобразовывает оптические характеристики потока исходящих световых лучей.

Обеспечением прохождения электротехнических процессов внутри люминесцентной лампы занимается пускорегулирующая аппаратура . Ее сокращенно называют аббревиатурой ПРА.

Типы пускорегулирующих аппаратов

В зависимости от используемой элементной базы устройства ПРА могут быть выполнены двумя способами:

1. электромагнитной конструкцией;

2. электронным блоком.

Первые модели люминесцентных ламп работали исключительно за счет первого метода. Для этого применялись:

Электронные блоки появились не так давно. Их стали выпускать после массового, бурного развития предприятий, производящих современный ассортимент электронной базы на основе микропроцессорных технологий.

Электромагнитные пускорегулирующие аппараты

Принцип работы люминесцентной лампы с электромагнитным ПРА (ЭМПРА)

Стартерная схема запуска с подключением электромагнитного дросселя считается традиционной, классической. Благодаря относительной простоте и дешевизне она остается популярной, продолжает массово использоваться в схемах освещения.

После подачи сетевого питания на лампу напряжение через обмотку дросселя и вольфрамовые нити накала подводится к электродам стартера. Он создан в виде малогабаритной газоразрядной лампы.

Поступившее на ее электроды напряжение сети вызывает между ними тлеющий разряд, формирующий свечение инертного газа и нагрев его среды. Находящийся рядом биметаллический контакт воспринимает его, изгибается. изменяя свою форму, и замыкает промежуток между электродами.

В цепи электрической схемы образуется замкнутый контур и по нему начинает течь ток, нагревая нити накала люминесцентной лампы. Вокруг них образуется термоэлектронная эмиссия. Одновременно происходит разогрев паров ртути, находящихся внутри колбы.

Образовавшийся электрический ток примерно наполовину снижает напряжение, приложенное от сети на электроды стартера. Тлеющий между ними разряд снижается, а температура падает. Биметаллическая пластина уменьшает свой изгиб, разъединяя цепь между электродами. Ток через них прерывается, а внутри дросселя создается ЭДС самоиндукции. Она мгновенно создает кратковременный разряд в подключенной к ней схеме: между нитями накала люминесцентной лампы.

Его величина достигает нескольких киловольт. Ее хватает для создания пробоя среды инертного газа с подогретыми парами ртути и разогретыми нитями накала до состояния термоэлектронной эмиссии. Между концами лампы возникает электрическая дуга, являющаяся источником света.

В то же время величины напряжения на контактах стартера не хватает для пробоя его инертного слоя и повторного замыкания электродов биметаллической пластины. Они так и остаются в разомкнутом состоянии. Стартер в дальнейшей схеме работы участие не принимает.

После запуска свечения ток в цепи необходимо ограничивать. Иначе возможно перегорание элементов схемы. Эта функция тоже возложена на дроссель. Его индуктивное сопротивление ограничивает возрастание тока, предотвращает выход лампы из строя.

Схемы подключения электромагнитных ПРА

На основе изложенного выше принципа работы люминесцентных ламп для них создаются различные схемы подключения через пускорегулирующую аппаратуру.

Самой простой является включение дросселя и стартера на одну лампу.

При таком способе в схеме питания возникает дополнительное индуктивное сопротивление. Чтобы уменьшить реактивные потери мощности от его действия используют компенсацию за счет включения на входе схемы конденстора, сдвигающего угол вектора тока в противовположную сторону.

Если мощность дросселя позволяет использовать его для работы нескольких люминесцентных ламп, последние собирают в последовательные цепочки, а для запуска каждой используют индивидуальные стартеры.

Когда требуется компенсировать действие индуктивного сопротивления, то применяют тот же прием, что и раньше: подключают компенсационный конденсатор.

Вместо дросселя можно использовать в схеме автотрансформатор, который обладает тем же индуктивным сопротивлением и позволяет регулировать величину выходного напряжения. Компенсацию потерь активной мощности на реактивной составляющей осуществляют подключением конденсатора.

Автотрансформатор может использоваться для освещения несколькими лампами, подключаемыми по последовательной схеме.

При этом важно создавать резерв его мощности для обеспечения надежной работы.

Недостатки эксплуатации электромагнитных ПРА

Габариты дросселя требуют создания отдельного корпуса для пускорегулирующей аппаратуры, занимающего определенное пространство. При этом он издает хоть и небольшой, но посторонний шум.

Конструкция стартера не отличается надежностью. Периодически лампы гаснут из-за его неисправностей. При отказе стартера происходит фальстарт, когда можно визуально наблюдать несколько вспышек до начала стабильного горения. Это явление влияет на ресурс нитей накала.

Электромагнитные ПРА создают относительно высокие потери энергии, снижают КПД.

Умножители напряжения в схемах запуска люминесцентных ламп

Эта схема часто встречается в любительских разработках и не используется в промышленных образцах, хотя не требует сложной элементной базы, проста в изготовлении, работоспособна.

Принцип ее работы заключается в ступенчатом увеличении питающего напряжения сети до значительно бо́льших значений, вызывающих пробой изоляции среды инертного газа с парами ртути без их разогрева и обеспечения термоэлектронной эмиссии нитей накала.

Такое подключение позволяет использовать даже баллоны ламп с перегоревшими нитями накала. Для этого в их схеме с обеих сторон колбы просто шунтируют внешними перемычками.

Подобные схемы обладают повышенной опасностью к поражению человека электрическим током. Ее источником является выходящее с умножителя напряжение, которое можно довести до киловольта и больше.

Мы не рекомендуем эту схему к использованию и публикуем ее для разъяснения опасности создаваемых ею рисков. Заостряем на этом вопросе ваше внимание специально: сами не применяйте этот способ и предупреждайте своих коллег об этом главном недостатке.

Электронные пускорегулирующие аппараты

Особенности работы люминесцентной лампы с электронным ПРА (ЭПРА)

Все физические законы, происходящие внутри стеклянной колбы с инертным газом и парами ртути для образования разряда дуги и свечения остались без изменений в конструкциях ламп, управляемых электронными пускорегулирующими устройствами.

Поэтому алгоритмы работы ЭПРА остались теми же, что и у их электромагнитных аналогов. Просто старая элементная база заменена современной.

Это обеспечило не только высокую надежность пускорегулирующей аппаратуры, но и ее маленькие габариты, позволяющие устанавливать ее в любом подходящем месте, даже внутри цоколя обычной лампочки Е27, разработанного еще Эдисоном для ламп накаливания.

По этому принципу работают малогабаритные энергосберегающие светильники с люминесцентной трубкой сложной закрученной формы, которые по габаритам не превышают лампы накаливания и создаются для подключения к сети 220 через старые патроны.

В большинстве случаев для электриков, занимающихся эксплуатацией люминесцентных ламп, достаточно представлять простую схему подключения, выполненную с большим упрощением из нескольких составных частей.

Из электронного блока ЭПРА для эксплуатации выделяются:

входная цепь, подключаемая к сети питания 220 вольт;

две выходных цепи №1 и №2, присоединяемые к соответствующим нитям накала.

Обычно электронный блок выполняется с высокой степенью надежности, длительным ресурсом. На практике чаще всего у энергосберегающих ламп при эксплуатации происходит разгерметизация корпуса колбы по разным причинам. Из него сразу уходит инертный газ и пары ртути. Такая лампа уже не загорится, а электронный блок у нее остается в исправном состоянии.

Его можно использовать повторно, подключить на колбу соответствующей мощности. Для этого:

цоколь лампы аккуратно разбирают;

из него извлекают электронный блок ЭПРА;

помечают пару проводов, задействованных в схеме питания;

маркируют проводники выходных цепей на нити накала.

Дальше остается только переподключить схему электронного блока на целую, исправную колбу. Она будет работать дальше.

Устройство электромагнитных ПРА

Конструктивно электронный блок состоит из нескольких частей:

фильтра, устраняющего и блокирующего электромагнитные помехи, поступающие из питающей сети в схему или создаваемые электронным блоком при работе;

выпрямителя синусоидальных колебаний;

схемы коррекции мощности;

электронного балласта (аналог дросселя).

Электрическая схема инвертора работает на мощных полевых транзисторах и создается по одному из типовых принципов: мостовой или полумостовой схеме их включения.

В первом случае работает четыре ключа в каждом плече моста. Такие инверторы создаются для преобразования больших мощностей у осветительных систем в сотни ватт. Полумостовая схема содержит всего два ключа, обладает меньшим КПД, используется чаще.

Обе схемы управляются от специального электронного блока — микродрайвера.

Как работает электронная ПРА

Для обеспечения надежного свечения люминесцентной лампы алгоритмы ЭПРА разбиты на 3 технологических этапа:

1. подготовительный, связанный с первоначальным нагревом электродов с целью увеличения термоэлектронный эмиссии;

2. поджигание дуги подачей импульса высоковольтного напряжения;

3. обеспечение стабильного протекания дугового разряда.

Такая технология позволяет быстро включать лампу в работу даже при отрицательной температуре, обеспечивает мягкий запуск и выдачу минимально необходимого напряжения между нитями накала для хорошего свечения дуги.

Одна из простых принципиальных схем подключения электронного ПРА к люминесцентной лампе показана ниже.

Диодный мост на входе выпрямляет переменное напряжение. Его пульсации сглаживаются конденсатором С2. После него работает двухтактный инвертор, включенный по полумостовой схеме.

В его состав входят 2 n-p-n транзистора, создающие колебания высокой частоты, которые управляющими сигналами подаются в противофазе на обмотки W1 и W2 трехобмоточного тороидального в/ч трансформатора L1. Его оставшаяся обмотка W3 выдает высокое резонансное напряжение на люминесцентную лампу.

Таким образом, при включении питания до начала зажигания лампы в резонансном контуре создается максимальный ток, который обеспечивает нагрев обеих нитей накала.

Параллельно лампе подключен конденсатор. На его обкладках создается большое резонансное напряжение. Оно запускает электрическую дугу в среде инертных газов. Под ее действием обкладки конденсатора закорачиваются и резонанс напряжений прерывается.

Однако свечение лампы не прекращается. Она продолжает работать автоматически за счет оставшейся доли приложенной энергии. Индуктивное сопротивление преобразователя регулирует ток, проходящий через лампу, поддерживает его в оптимальном диапазоне.

Как работает лампа ДРЛ

В ночное время в уличных светильниках широко используются дуговые ртутные люминофорные (ДРЛ) лампы высокого давления. Они применяются в производственных помещениях и на других объектах, не требующих качественной цветопередачи. Принцип работы ДРЛ лампы достаточно сложен, однако это позволяет придать осветительным приборам необходимые характеристики. Чтобы понять, как работает такая лампочка, нужно хорошо знать ее конструкцию.

Устройство лампы ДРЛ

Стандартная лампа ДРЛ состоит из стеклянной колбы, у которой снизу установлен цоколь с резьбой. Освещение происходит с помощью ртутно-кварцевой горелки, выполненной в виде трубки. Внутренняя часть трубки заполнена аргоном и небольшим количеством ртути.

У каждой лампы ДРЛ расшифровка аббревиатуры соответствует полному названию дуговых ртутных ламп. В более ранних конструкциях символ Д означал дроссель или лампу, где используется дроссель. В настоящее время используются бездроссельные лампы ДРЛ, доступные многим потребителям. Поэтому в связи с изменениями функциональности, в маркировке лампы ДРЛ расшифровка буквы Д была изменена.

Самые первые лампочки этого типа были оборудованы лишь двумя электродами. В связи с этим для их запуска требовалось дополнительное крупногабаритное устройство поджога, работающего за счет высоковольтного импульсного пробоя газового промежутка горелки. Эти лампочки были постепенно сняты с производства и заменены четырехэлектродными конструкциями, запускающимися только с помощью дросселя.

В четырехэлектродной лампочке имеются основные и дополнительные электроды. Соединение электродов с главными катодами осуществляется путем соединения противоположных полярностей добавочным угольным резистором. Применение дополнительных электродов позволяет стабилизировать работу лампы и значительно упростить ее зажигание.

Основная функция цоколя заключается в приеме электрической энергии из сети через точечный и резьбовой элемент от контактов патрона, установленного в светильнике. Затем, происходит подача электроэнергии к электродам. В кварцевой колбе имеются ограничивающие сопротивления в количестве двух штук, находящиеся в одной цепи с дополнительными электродами. На внутреннюю поверхность колбы наносится люминофор.

Принцип работы лампы ДРЛ

Каждая горелка изготавливается из прозрачного тугоплавкого материала, устойчивого к химическим воздействиям. Для этого используются керамические материалы или кварцевое стекло. Инертный газ, закачиваемый внутрь, имеет точную дозировку. Окончательный дуговой электрический разряд создается путем добавления металлической ртути, обеспечивая нормальное свечение лампы.

Запуск выполняется с помощью зажигающих электродов. Когда к лампочке подается питающая электрическая энергия, происходит создание тлеющего разряда между зажигающим и основным электродом, которые расположены очень близко относительно друг друга. В результате, происходит накопление носителей зарядов, достаточных для появления пробоя на расстоянии между первым и вторым основным электродом. Тлеющий разряд в самые короткие сроки принимает дуговую форму.

Устойчивый свет и работа лампы типа ДРЛ начинается примерно через 10-15 минут, после подачи электроэнергии. В течение этого времени ток, протекающий в лампочке, значительно выше номинального значения и ограничивается сопротивлением, находящимся в пускорегулирующей аппаратуре. Продолжительность пуска напрямую зависит от температуры наружной среды. При низких температурах пусковой режим становится более продолжительным.

В процессе горения, излучение электрического разряда становится голубым или фиолетовым, благодаря свечению люминофора. Происходит смешивание зеленовато-белого света горелки и красноватого люминофорного свечения. Получается яркий цвет, приближающийся к белому. Следует учитывать наличие колебаний напряжения электросети, оказывающих влияние на световой поток. При низком напряжении лампочка ДРЛ может попросту не запуститься, а та, которая горит – может погаснуть.

Читайте также:  Электрический оловоотсос своими руками

Рассматривая принцип работы ртутных газоразрядных ламп (ДРЛ), следует учитывать ее сильный нагрев во время работы. Поэтому конструкция приборов освещения с такими лампами предусматривает использование термостойких проводов и качественных контактов, устанавливаемых в патроне. В процессе нагревания происходит рост давления внутри горелки с одновременным ростом пробойного напряжения. Из-за этого нагретая лампа может не включиться. Прежде чем производить повторное включение, нужно дать ей остыть.

Лампы ДРВ и ДРЛ отличия

Оба типа светильников являются газоразрядными ртутными лампами, а точнее их разновидностями. Они широко используются во внешнем и внутреннем освещении. Нередко возникает вопрос, как отличить лампу ДРЛ от ДРВ, поскольку внешне они абсолютно одинаковы. Тем не менее, каждая из них обладает индивидуальными особенностями, собственными техническими характеристики и принципами работы.

В обеих лампах для горелок использовано кварцевое стекло или специальный керамический состав. В каждую горелку помещены точные дозы инертных газов с небольшим количеством ртути. Напряжение поступает к ртутным лампам в область пары электродов, расположенных по бокам горелки. За счет маленького расстояния газ между электродами быстро ионизируется, после чего в этом месте возникает тлеющий разряд. Он постепенно переходит в зону между основными электродами, мгновенно превращается в дуговой разряд, после чего светильники с лампами ДРЛ начинают гореть в штатном режиме.

Полностью нормативные световые качества набираются лампами примерно через 10 минут после включения. Для ограничения номинального тока в лампах ДРЛ используется пускорегулирующий прибор с установленным сопротивлением. После того как амплитуда переходит значение сетевого напряжения, вся энергия, накопленная индуктивностью, уходит в нагрузку. В кварцевой горелке происходит некоторая задержка напряжения.

В лампах типа ДРВ (дуговых ртутных вольфрамовых) такая подкачка энергии не требуется поскольку в них отсутствует индуктивный балласт. Функции ограничения тока выполняются самой вольфрамовой спиралью, с заранее установленным сопротивлением и мощностью, соответствующим пусковым режимам горелки. Напряжение горелки будет нарастать по мере ее разогрева, и постепенно уменьшаться на спирали. В результате внутренняя колба ламп ДРВ будет светиться на 30% меньше, чем лампы уличного освещения ДРЛ.

Основным отличием этих двух ламп является невозможность использования ДРЛ без пускорегулирующего устройства, в качестве которого используется дроссель. Он служит ограничителем тока, питающего лампу и должен обязательно соответствовать ее мощности. Если включение производится без дросселя, такая лампочка моментально сгорит под действием высокого тока, проходящего через нее. Повторное включение лампы ДРЛ можно выполнять лишь после ее полного остывания.

Оба типа ламп обладают повышенной чувствительностью к перепадам температур. Поэтому вся конструкция защищена наружной колбой. Кроме того, ее внутренняя сторона покрыта люминофором, с помощью которого ультрафиолетовое свечение преобразуется в часть спектра красного цвета.

Срок службы лампы ДРЛ

Данные лампы получили широкое распространение для уличного и промышленного освещения. В случае необходимости они могут использоваться и для внутреннего освещения помещений. Такая популярность стала возможной, благодаря таким эргономическим показателям, как соответствие излучения солнечному свету, коэффициент пульсаций светового потока и другим. Немаловажное значение имеет и тот факт, что ламп ДРЛ варьируется в очень широком диапазоне, значительно расширяя сферу их использования.

Особое внимание следует обратить на сроки службы, заявленные производителями. Как показывает практика, ртутные лампы ДРЛ после 2-3 месяцев эксплуатации в зависимости от интенсивности использования, теряют значительную часть светового потока. Вместе с тем, расход электрической энергии остается на том же уровне. Кроме того, было достоверно установлено, что эти лампы обладают так называемым эффектом старения. То есть, через 400 часов работы их световой поток снизится примерно на 20%, а к концу срока эксплуатации данный показатель составит уже 50%.

Данные недостатки полностью перекрываются простотой и технологичностью, доступностью и низкой стоимостью ртутных газоразрядных лампочек. Их использование становится экономически выгодным при отсутствии жестких требований к освещению на конкретном объекте или участке.

Натриевые лампы: принцип действия

Схема подключения лампы ДРЛ

Принцип работы люминесцентной лампы

Расчет онлайн энергосберегающих ламп и ламп накаливания

Особенности светильника ДРЛ

Для освещения улиц, промышленных и архитектурных объектов, сельскохозяйственных комплексов, не требующих высокого качества цветопередачи, применяется светильник ДРЛ (дуговая ртутная лампа высокого давления). Особенность прибора заключается в высоком КПД, экономичности, длительной эксплуатации.

Существует множество разновидностей осветительного устройства: дневного, ультрафиолетового света, вольфрамные, натриевые варианты. Все газоразрядные изделия объединяет непостоянство сопротивления (соответственно тока). Ограничить рабочий ток источников света помогает электронный (ЭПРА) или электромагнитный (ЭмПРА) пускорегулирующий аппарат, выполненный в виде катушки индуктивности — дросселя.

Преимущества и недостатки

Главным достоинством люминесцентной лампы выступает высокая светоотдача, относительно типовых светильников. Если ртутная ДРЛ 250 обеспечивает световой поток 12000 лм при расходе энергии 250 Вт, обычное устройство будет потреблять 1000 Вт. Размеры мощных лампочек (более 400 Вт) отличаются от стандартных устройств компактностью. Спектр излучения прибора естественный, свет интенсивный, далеко излучается.

Отрицательными характеристиками приборов высокого давления выступают:

  1. Выделение озона в ходе эксплуатации, важно позаботиться о вентиляции помещения.
  2. Стоимость люминесцентных светильников в 5–7 раз дороже обычных ламп высокой мощности.
  3. Размеры отдельных модификаций (например, ДРЛ 125 Е40) превышают аналогичные устройства с вольфрамовой нитью.
  4. Спустя 2-3 месяца эксплуатации неизбежно изменение спектра излучения. Недостаток вызван техническими характеристиками люминофора.
  5. Светильник ДРЛ чувствителен к перепадам напряжения и требует подключения через пускорегулирующий аппарат.
  6. Неприятное гудение и моргание световых лучей определяет ощутимые неудобства в жилых помещениях. Применять приборы высокого давления в цехах с вращающимися предметами нежелательно в силу стробоскопического эффекта (подвижные устройства кажутся неподвижными).
  7. Нормальная рабочая высота для светильника ДЛР — четыре метра.

Важно помнить! Ртутный состав горелки требует отдельной утилизации прибора.

Характеристики

Рабочие параметры светильников ДРЛ:

  • Мощность лампочек 80-1000 Вт. Определяется количеством электродов: два электрода — 250…1000 Вт, четыре электрода — 80…1000 Вт. Особой популярностью пользуются приборы мощностью 250 Вт.
  • Цоколь. Зависит от мощности: приборы до 250 Вт оснащают цоколем е27, свыше 250 Вт подойдет вариант е40.
  • Тактовая нагрузка сети достигает 8 ампер. Показатель взаимосвязан с мощностью осветительного прибора.
  • Световой поток ртутных устройств составляет минимум 3 2 00 люмен. Значение характерно для источника света на 80 Вт. Дроссельные лампы уличного освещения с максимальной мощностью 1 кВт излучает световой поток близко 52 000 люмен.

Интересно! Срок эксплуатации дроссельного светильника достигает 20 000 часов. Однако лампочка перестает работать раньше на 30-50 %.

Сфера использования

Люминесцентные лампы эффективно используются на автодорогах, улицах и в скверах, производственных цехах и объектах технического назначения (АЗС, стоянках, складах). Часто встречаются в качестве декоративных источников освещения архитектурных сооружений и административных зданий. Разнообразие конструктивных особенностей продукции ДРЛ позволяет подобрать оптимальный вариант для привлечения косяков рыб и планктона в процессе промысла, обеспечить холодным светом медицинское оборудование для обеззараживания помещений.

Разновидности светильников

Светильники типа ДРЛ характеризуются широким разнообразием. Отличия составляет область применения (внутренние, наружные), типы конструкций и мощность устройств.

Внутренние

Светильники с люминесцентными лампами рекомендованы для освещения производственных объектов с повышенным уровнем пыли и влаги, а также прачечных, автомоек, закрытых складов, гаражей. Приборы работают от сети переменного тока с частотой 50 Гц и номинальным напряжением 220 В. Температура окружающей среды при эксплуатации —20°С до +50°С.

Уличные

Наружные лампы используются для прямого, рассеянного, местного освещения, удачно сочетаются с симметричными или асимметричными отражателями. Светильник уличный типа ДРЛ заключен во влагозащищенный прочный корпус, способен противостоять сильному ветру, заморозкам и ливням.

Классификация светильников по типу ламп:

  • ДРЛ. Изделия характеризуются небольшим индексом цветопередачи, выделением тепла, 5-х минутным выходом на требуемый уровень светового потока. При выборе ртутной продукции также стоит учитывать необходимость стабильного источника энергии и термостойких проводников.

  • ДРЛФ. Лампы с фокусированным светом отличаются способностью стимулировать фотосинтез у растений.
  • ДРВЭД. Серия дуговых ртутных эритемных вольфрамовых лампочек не требует подключения ПРА. Активация происходит под действием балласта, аналогично обычным лампам накаливания. В основе конструкции лежат йодиды металлов, позволяющие обеспечить желаемый уровень цветности. Лампы испускают УФ (эритемное) излучение, эффективно работают при переменном токе. Работают без ПРА, достигая максимального индекса светоотдачи и длительного периода эксплуатации. Мощность ламп составляет диапазон 125-1000 Вт.

  • ДНаТ. Принцип действия дуговой натриевой трубчатой лампы аналогичен лампам ДРЛ. Однако светильникам ДНаТ свойственно специфическое свечение и свет оранжево-желтого или золотисто-белого оттенка. Приборы потребляют 70-400 Вт мощности и считаются наиболее экономичными источниками света.

Важно! Самыми популярными и широко применяемыми являются лампы ДРЛ мощностью 250 и 400 Вт.

Конструкция

Лампа дуговая представлена стеклянным баллоном 1 с резьбовым цоколем 2. По центру колбы размещена ртутно-кварцевая горелка (трубка) 3, наполненная аргоном и одной каплей ртути. Четырех электродные лампы располагают главными катодами 4 и дополнительными электродами 5. Электроды подключены к катоду противоположной полярности посредством добавочного угольного резистора 6.

Подробное описание элементов позволяет выделить следующие особенности дроссельной лампы:

  • Цоколь — простейшее устройство, принимающее энергию от электросети за счет контакта токоведущей части лампы ДРЛ (резьбовой и точечной) с контактами патрона. Полученная энергия поступает на электроды горелки.
  • Горелка служит главным функциональным элементом ДРЛ лампы. Внешне деталь представлена кварцевой колбой, оснащенной с обеих сторон по два электрода (основные и дополнительные). Внутреннее пространство горелки заполнено газом аргоном для изоляции теплообмена между горелкой и средой, а также одной каплей ртути.
  • Внешняя колба содержит кварцевую горелку светильника, подключенную к проводникам от контактного цоколя. Также стеклянная емкость содержит азот и два ограничителя сопротивления (подсоединены к дополнительным электродам), покрыта изнутри люминофором.

Первые лампы ДРЛ оснащали двумя электродами. Для поджога светильника приходилось дополнительно включать в схему пусковой элемент (высоковольтный импульсный пробой промежутка горелки). Более затратный вариант ДРЛ был снят с производства, заменен 4-х электродным вариантом. Для бесперебойной работы достаточно дросселя.

Принцип работы

Принцип действия электроприбора основан на использовании светящегося тела в качестве столба дугового разряда. Особенность достигается особой технологией запуска устройства:

  • При подаче электроэнергии на светильник между электродами образуется разряд, сразу принимает дуговую форму.
  • На протяжении 10 минут после разряда технические параметры устройства достигают номинальных значений. Время пускового периода определяется внешней температурой — в теплых условиях лампа разгорается быстрее.
  • От разряда внутри колбы образуется голубое (фиолетовое) свечение и ультрафиолетовые лучи, заставляющие светиться люминофор. Потоки смешиваются, лампа получается белой.

Обратите внимание! Напряжение сети в процессе горения лампы способствует колебаниям светового потока в диапазоне 20–30 %. Приборы нагреваются, возникает необходимость применять термостойкие проводники и надежные контакты для патронов.

Для чего необходим дроссель в светильнике

Дроссель стабилизирует работу ДРЛ. Запуск светильника напрямую, без дополнительного устройства не рекомендуется — лампа сгорит. Причиной выступает пусковой ток, превышающий номинальный в 2,5 раза. Розжиг лампы сопровождается электрическим пробоем в атмосфере инертных газов, заполненных парами ртути или натрия, затем следует тлеющий или дуговой разряд. Сопротивление газа снижается в десятки раз, ток увеличивается. Отсутствие ограничений для тока грозит чрезмерным выделением тепла, в доли секунд газы внутри лампы сгорят, светильник выйдет из строя. Во избежание поломок, последовательно в систему добавляют сопротивление.

Применять активное сопротивление нецелесообразно, ввиду повышенных потерь энергии на теплоотдачу. Более эффективным решением станет добавление электронной схемы или дроссели. Активного сопротивления ограничитель не имеет, мощности не расходует, энергию накапливает и отдает в цепь.

Как правильно подключить

С дросселем. Схема предусматривает последовательное соединение дросселя с лампой ДРЛ, подключенных к переменной сети

220 вольт. Полярность подключения не имеет значения.

Без дросселя. Эксплуатация дуговой лампы без дополнительных приспособлений возможна при соблюдении ряда условий:

  1. Использования источника света типа ДРВ. Лампы, способные работать без дросселя, оснащены дополнительной вольфрамовой спиралью, выполняющей роль пускателя. Характеристики спирали соответствуют параметрам горелки.
  2. Запуска светильника ДРЛ посредством импульса напряжения, исходящего от конденсатора.
  3. Розжига лампы ДРЛ при последовательном подключении лампы накаливания.

Важно! При включении ДРЛ разгорается не сразу — процесс занимает близко 5 минут, при повторном запуске работающего светильника — лампа должна остыть (5 — 15 мин).

Знание параметров и принципа работы ртутных ламп позволяет правильно подобрать светильник и подключить.


Как запустить лампы ДРЛ с дросселем и без?

Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 000 ватт, а подключается к однофазной электрической сети с напряжением 220 вольт и частотой 50 герц.

Для чего нужен дроссель?

Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:

    Лампы люминесцентные и ультрафиолетового освещения.

Ультрафиолетовая лампа
Разного вида дуговые ртутные осветительные приборы: ДРТ, ДРЛ, ДРИЗ, ДРШ, ДРИ.

Читайте также:  Муфта электрическая соединительная кабельная

Дуговые ртутные лампы
Дуговые натриевые лампы: ДНаМТ, ДНаС, ДНаТ.

Дуговая натриевая лампа

Все осветительные устройства имеют отличия в принципе получения светового потока, есть и другие различия:

  • в их устройстве применяются разные материалы;
  • отличаются наличием химических элементов;
  • внутри колб давление по собственным параметрам каждого осветительного устройства;
  • они различны по мощности и яркости светового потока.

Объединяет эти виды ламп непостоянная величина пускового тока и сопротивления в процессе пуска и дальнейшей работы.

Для того чтобы ограничить величину рабочего тока, в осветительных устройствах этого вида применяют разного вида балласт: ЭПРА, ПРА и ЭмПРА, которые представляют собой катушки индуктивности (дроссели). В момент пуска каждое устройство этого типа имеет высокое значение сопротивления; когда осветительный прибор разжигается, происходит процесс электропробоя в среде инертного газа, которым наполнена лампа (ртутный или натриевый пар), и возникает дуговой разряд.

В процессе, когда происходит зажигание лампы, ионизированный газ теряет сопротивление от дугового разряда в несколько десятков раз, и по этой причине возрастает ток, идет выделение тепла. Если не ограничивать величину тока, он мгновенно создаст перегретую газовую среду, что приведет к поломке осветительного устройства, его повреждению изнутри. Для предотвращения этого в цепь прибора освещения включают сопротивление (дроссель).

Физические параметры и схема подключения дросселя

Последовательно включенный дроссель ДРЛ имеет реактивное сопротивление, величина которого зависит от катушки индуктивности: один генри пропускает один ампер тока, когда напряжение – один вольт.

Дроссель

К параметрам катушки индуктивности относятся:

  • квадрат используемой медной проволоки;
  • количество витков;
  • какой сердечник и величина поперечного сечения магнитопровода;
  • какое электромагнитное насыщение.

Катушка индуктивности имеет активное сопротивление, которое всегда учитывается, когда проводится расчет балласта для каждого типа прибора освещения этого вида с учетом его мощности, от этого зависят габаритные размеры дросселя.

Рассмотрим простую схему включения балласта, когда в конструкции лампы ДРЛ предусмотрены электроды (дополнительные) для процесса возникновения тлеющего разряда, переходящего в электродугу.

Схема подключения лампы ДРЛ

В этом случае индуктивность ограничивает величину рабочего тока в осветительном устройстве.

Балласт для люминесцентных ламп

Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.

Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.

Схема включения

Специалисты по параметрам потери мощности различают несколько исполнений этих осветительных устройств:

  • обычный вид исполнения, с литерой D;
  • пониженный вид исполнения, с литерой B;
  • низкий вид исполнения, с литерой C.

Применение балласта имеет свои положительные моменты:

  • осветительное устройство работает в безопасном режиме, необходимо использовать и стартер для пуска;
  • появляется способность сдерживать значение тока на установленном уровне;
  • световой поток становится намного стабильнее, хотя полностью мерцание убрать нет возможности;
  • стоимость такого исполнения светильника доступна для широкого потребления.

Схема включения люминесцентного прибора освещения через балласт и стартер Подключение ламп с применением конденсатора с компенсационной функцией

Существует способ подключения люминесцентного прибора освещения без использования балласта, но для этого необходимо в два раза повысить сетевое напряжение с выпрямленным током, а вместо балласта использовать лампу с нитью накаливания. Схема такого включения:

Подключение люминесцентного прибора без использования балласта

Как самостоятельно сделать дроссель?

Благодаря своим параметрам дуговые приборы освещения мощностью 250 или 125 ватт применяются обществом для освещения следующих помещений:

  • гаражные кооперативы;
  • дачные участки;
  • загородный дом.

Купить устройство освещения этого вида можно в магазине или на рынке, часто возникает проблема, как найти дроссель для ламп ДРЛ, стоимость дросселя может быть выше самой лампы из-за конструктивных особенностей и наличия медной проволоки.

Решить этот вопрос помогут народные идеи изготовления балласта для лампы ДРЛ 250 из других материалов: три дросселя для лампы дневного света при мощности лампы 40 ватт или же два дросселя от лампы дневного света мощностью в 80 ватт. В нашем случае для того чтобы зажечь лампу ДРЛ, используя самодельный балласт, сделанный своими руками, рекомендуется применить два дросселя мощностью 80 ватт и один балласт мощностью 40 ватт, соединение показано на фото.

Подключение лампы ДРЛ с самодельным балластом

Из схемы видно, что все балласты образуют один дроссель, собрать пусковой балласт можно в общий ящик. Важно! Особенное внимание нужно уделить контактам на дросселях, они должны быть надежными, чтобы не нагревались и не искрились.

Как можно запустить ДРЛ-лампу без дросселя?

Существует возможность пуска дугового устройства освещения 250 ватт без балласта, но для этого необходимо применить другую технологию включения прибора. Специалисты рекомендуют вариант покупки специальной лампы ДРЛ 250, у которой есть способность включения без балласта (дросселя), когда в конструкцию лампы добавляется спираль, в задачу которой входит разбавлять световой поток.

Еще народными умельцами применяется способ пуска ламп этого вида с использованием набора конденсаторов, но в этом случае надо точно знать величину получаемого тока. Также применяют пуск ламп ДРЛ с использованием простой лампы, но только при условии, что она имеет одинаковую мощность с ДРЛ-лампой.

Лампы ДРЛ: устройство, характеристики, правила выбора

Сохраняющая популярность лампа ДРЛ – представитель газоразрядных осветительных приборов, отличающийся насыщенным световым потоком и долговечностью. Содержащие ртуть изделия хорошо себя зарекомендовали при обустройстве искусственного освещения улиц и промышленных объектов.

Однако ряд технико-эксплуатационных нюансов не дают их применять в быту и ставят под сомнение их целесообразность использования в других сферах жизни. Все о газоразрядных приборах освещения высокого давления вы узнаете из представленной нами статьи. Наши советы помогут грамотно выбрать приборы.

Устройство ртутной лампы

Светильники ДРЛ относятся к газоразрядным приборам высокого давления. Приоритетная сфера использования – освещение улиц, предприятий, гаражей и цехов промышленного назначения. ДРЛ применяются там, где необходим мощный световой поток, а к качеству передачи цветов не предъявляются особые требования.

Основные функциональные части:

  1. Колба. Внешняя оболочка прибора изготовлена из жаропрочного стекла. Внутри находится кварцевая горелка, к которой подведены проводники. Стыковка электродов с катодами происходит за счет соединения противоположных полярностей с угольным резистором. Из колбы выкачан воздух, а азот закачан, внутренняя поверхность покрыта люминофором.
  2. Цоколь. Отвечает за прием электроэнергии из сети за счет соединения точечного и резьбового контакта с патроном, вмонтированного в светильник.
  3. Кварцевая горелка. Главный функциональный элемент ртутной лампы. Конструктивно это кварцевая колба, в которой с двух сторон размещены электроды: два основных и два дополнительных зажигающих.

Пространство колбы под давлением заполнено инертным газом, обеспечивающим изоляцию теплообмена между внутренней средой и горелкой. Дополнительно туда добавляется буквально капля ртути. В холодном состоянии ртутное соединение выглядит как налет на колбе или имеет форму шарика.

Принцип работы: суть переходных процессов

Действие дуговой ртутной лампы базируется на процессах электрического разряда в газообразной среде, протекающих в колбе под большим давлением. Это генерирует источник свечения по типу спирали в лампочке накаливания. Но им является не вольфрамовая раскаленная нить, а шнур светящихся ртутных паров, «натянутый» между электродами.

Стойкое свечение ДРЛ-лампы начинается через 8-10 минут после подачи энергии. За это время ток, протекающий в осветительном приборе, выше номинального значения, а ограничивается сопротивлением пускорегулирующей аппаратуры.

Длительность пуска зависит от температуры внешней среды – чем холоднее, тем дольше «разогрев» лампы. После включения ртуть при нагреве медленно испаряется и постепенно усиливает разряд между рабочими электродами.

Когда ртутная составляющая полностью перейдет в газообразную форму, а давление внутри увеличится, то лампочка выйдет на максимальную светоотдачу.

Вольтовая дуга в ртутных парах создает свечение неприемлемой цветопередачи преимущественно сине-зеленых оттенков. Люминофор отвечает за преобразование УФ-излучения в красные тона света. Объединение цветов дает белое холодное свечение ДРЛ лампочки.

Специфика применения: плюсы и минусы ламп

Осветители типа ДРЛ преимущественно устанавливаются на столбах для освещения улиц, проезжих дорог, парковых зон, придомовых территорий и нежилых сооружений. Это обусловлено техническими и эксплуатационными особенностями ламп.

Главный плюс ртутно-дуговых приборов – высокая мощность, обеспечивающая качественное освещение просторных площадей и крупных объектов.

К числу дополнительных достоинств можно отнести:

  1. Долговечность. Средний срок работы, заявляемый производителями, – 12 тысяч часов. При этом, чем мощнее лампа, тем она дольше прослужит.
  2. Работа при низких температурах. Этот решающий параметр при выборе осветительного прибора для улицы. Газоразрядные лампы морозостойки и сохраняют свои рабочие характеристики при минусовых температурах.
  3. Хорошая яркость и угол освещения. Светоотдача ДРЛ-приборов зависимо от их мощности колеблется в пределах 45-60 Лм/В. Благодаря работе кварцевой горелки и люминофорному покрытию колбы достигается равномерное распределение света с широким углом рассеивания.
  4. Компактность. Лампы относительно небольшие, длина изделия на 125 Вт около 18 см, прибора на 145 Вт – 41 см. Диаметр – 76 и 167 мм соответственно.

Одна из особенностей использования осветителей ДРЛ – необходимость подключения к сети через дроссель. Роль посредника – ограничение тока, питающего лампочку. Если подсоединить осветительный прибор в обход дросселя, то из-за большого электротока он сгорит.

Ряд недостатков ограничивает применение ДРЛ-светильников в быту.

  1. Длительность розжига. Выход на полную освещенность – до 15 минут. Для разогрева ртути требуется время, что в условиях дома очень неудобно.
  2. Чувствительность к качеству электроснабжения. При понижении напряжения на 20% и более от номинального значения, включить ртутную лампу не получится, а светящийся прибор потухнет. При снижении показателя на 10-15% – ухудшается яркость света на 25-30%.
  3. Шум при работе. ДРЛ-светильник издает жужжащий звук, не заметный на улице, но ощутимый в помещении.
  4. Пульсация. Несмотря на применение стабилизатора, лампочки мерцают – выполнять длительную работу при таком освещении нежелательно.
  5. Низкая цветопередача. Параметр характеризует реальность восприятия окружающих цветов. Рекомендованный индекс цветопередачи для жилых помещений – не менее 80, оптимально – 90-97. У ламп ДРЛ значение показателя не достигает 50-ти. При таком освещении невозможно четко различать оттенки и цвета.
  6. Небезопасность применения. В процессе работы выделяется озон, поэтому при эксплуатации лампы внутри помещения требуется организация качественной вентсистемы.

Кроме того, наличие в колбе ртути само по себе представляет потенциальную опасность. Такие лампочки после использования нельзя просто выбросить. Чтобы не загрязнять окружающую среду, они утилизируются соответствующим образом.

Существенный минус ДРЛ осветителей – невозможность повторного включения до полного остывания лампы. При работе прибора давление газа внутри стеклянной колбы сильно повышается (до 100 кПа). Пока лампа не остынет, пробить искровой промежуток напряжением запуска невозможно. Повторное включение происходит примерно через четверть часа.

Критерии выбора: оценка технических показателей

Определяя оптимальный вариант осветительного прибора, следует брать во внимание следующие характеристики:

  • мощность;
  • форму/размер цоколя;
  • яркость светового потока;
  • длительность работы.

Мощность. При выборе этого параметра стоит ориентироваться на назначение и расположение светильника. Если прибор покупается для освещения дороги, то надо учесть расстояние между фонарями – чем оно больше, тем производительней должны быть лампы.

Световой поток. Главный показатель светового излучения, направленного в разные стороны. Параметр измеряется в люменах (Лм). Именно по этому критерию, а не по мощности, необходимо сравнивать производительность разных типов ламп.

Значительная экономия на энергоресурсах – весомый аргумент в пользу светодиодов. Высокая стоимость LED-ламп окупается в первый год эксплуатации.

Цоколь. ДРЛ осветители выпускаются с двумя наиболее востребованными типами цоколей:

  • Е27 – винтовая форма, диаметр – 27 мм. Таким цоколем оснащаются ртутно-дуговые приборы на 80 Вт и 125 Вт.
  • Е40 – самый крупный размер категории «Е». Цоколь на 40 мм применяется в лампах на 250 Вт и выше, предназначенных для освещения просторных площадей.

Кроме типа закручивания в патрон следует учесть и габариты плафона светильника.

Длительность службы. Этот параметр во многом определяется качеством изготовления, а именно ответственностью производителя. Лучше выбирать лампы с максимальным периодом службы. Как правило, у высокомощных приборов срок эксплуатации выше.

Часть информации о характеристиках ламп заложена в маркировке. В отечественной практике буквенная аббревиатура обозначает название осветителя, цифровая – мощность. Производство ртутных ламп регламентировано ГОСТом 27682-88 и ГОСТом 53074-2008.

Зарубежные изделия типа ДРЛ согласно международной системе ILCOS маркируются QE. Некоторые производители придерживаются общеевропейского ZVEI и немецкого LBS порядка обозначений.

Маркеры ртутных ламп популярных компаний:

  • HPL – Philips;
  • HRL – Radium;
  • MBF – General Electric;
  • HQL – Osram;
  • HSL и HSB – Sylvania.

Дополнительные обозначения согласно ILCOS: QB – модели со встроенным балластом, QG – сферическая колба, QR – лампы с отражающим внутренним слоем.

Какому производителю отдать предпочтение?

Рекомендуется выбирать продукцию известных торговых марок, от покупки дешевых «безымянных» китайских лампочек лучше воздержаться.

Читайте также:  Терморегулятор для электрического котла отопления

Доверие среди покупателей завоевали следующие производители ртутных приборов:

  • Osram (Германия);
  • Philips (Нидерланды);
  • General Electric (США/Венгрия);
  • Next (Польша);
  • Евросвет (Украина);
  • Лисма (Россия);
  • DeLux (Китай).

На европейском рынке лидерами по производству и реализации осветительной продукции считаются два бренда: Osram и Philips. Обе компании имеют многолетний опыт работы – более века, широкий ассортимент и развитую сеть продаж.

Заводы американской компании General Electric размещены и в Европе. Качество товаров и продолжительность службы не уступает предыдущим брендам, а цена несколько ниже. За ДРЛ осветитель мощностью 250 Вт надо заплатить около 7 у.е.

E.Next – электротехнический холдинг, где основным производителем приборов выступает группа польских компаний Tarel. В линейке товаров представлены многочисленные серии разных ламп для домашнего, уличного и производственного освещения.

Осветители E.Next на 250 Вт по сравнению с лампами немецкого и голландского производства аналогичной мощности, уступают конкурентам в цветопередаче (Ra=40) и длительности службы (12000 часов). Ориентировочная цена – 5 у.е.

Ртутно-дуговые лампы российского, украинского и китайского фирменного производства находятся в одной ценовой категории, средняя стоимость изделий на 250 Вт – 3 у.е. Недостатком осветительных приборов является ограниченность их работы – согласно паспортных данных лампочки прослужат 5000 часов.

Сравнение лампочек ДРЛ с аналогами

Разрядные лампы часто сопоставляют между собой и с более выгодными светодиодами. Ближайшие аналоги ДРЛ – осветители трех типов: ДРВ, ДРИ и ДНаТ. Попробуем выявить особенности и конкурентные преимущества разных лампочек.

ДРВ. Ртутно-вольфрамовая дуговая лампочка по конструкции и принципу действию очень схожа с ДРЛ. Конструктивно внутри колбы имеется ртутная разрядная горелка и вольфрамовая спираль. Последний элемент ограничивает силу тока для горелки, а значит, дополнительная пускорегулирующая аппаратура не нужна.

Основные отличия ртутно-вольфрамовых ламп от ДРЛ:

  • больше расходуют электроэнергии – световой поток ДРВ 250 не более 5500 Лм;
  • предположительное время работы – 3000 часов;
  • загораются в течение 1-ой минуты.

ДРИ. Дуговые ртутные лампочки с излучающими добавками: галогенит индия, натрия, талия и пр. Металлические компоненты повышают светоотдачу приборов до 75-90 Лм/Вт.

ДНаТ. Натриевые дуговые лампы могут похвастаться максимальной светоотдачей и длительным эксплуатационным периодом среди разрядных осветителей. Производительность натриевых лампочек с течением времени сокращается не так заметно, как ДРЛ ламп.

  • максимальная светоотдача – 125 Лм/Вт;
  • работоспособность – в пределах 20 тысяч часов;
  • относительная стабильность параметров;
  • широкий диапазон рабочих температур;
  • выход на максимальную освещенность за 5-7 минут.

Минусы натриевых источников света: значительная пульсация и низкий коэффициент цветопередачи, Ra=25. В спектре излучения преобладают красные и желтые цвета.

Разрядные лампы уверенно уступают место светодиодным вариантам. LED-приборы по всем техническим и эксплуатационным параметрам превосходят своих предшественников.

Неоспоримые достоинства светодиодов: экологичность, минимальная пульсация, длительность службы, моментальное включение, отличная передача цветов и контрастность. Кроме отличных эксплуатационных характеристик, диодные приборы обладают температурной и механической стойкостью.

Требования по утилизации ртутных приборов

Бездумно выбрасывать отработанные или бракованные ртутьсодержащие лампочки нельзя. Приборы с поврежденной колбой являются серьезной угрозой здоровью человека и экологии в целом, потому нуждаются в специфической утилизации.

Вопрос о порядке утилизации небезопасных отходов актуален как для владельцев предприятий, так и для обычных жителей. Переработкой ртутных ламп занимаются организации, получившие соответствующую лицензию.

Предприятие заключает с такой фирмой договор на обслуживание. По заявке представитель утилизирующей компании выезжает на объект, производит сбор и вывоз ламп для последующего обеззараживания и переработки. Ориентировочная стоимость услуги – 0,5 у.е за один осветительный прибор.

Если выброс ртутьсодержащих ламп предприятиями как-то контролируется органами надзора, то соблюдение правил утилизации населением – личная ответственность граждан.

К сожалению, из-за низкой осведомленности далеко не каждый пользователь ртутных ламп осознает возможные последствия попадания ртутных паров в окружающую атмосферу.

Все виды энергосберегающих ламп детально описаны в следующей статье, в которой рассмотрены принципы действия, выполнено сравнение приборов, дана упрощенная экономическая оценка.

Выводы и полезное видео по теме

В предложенном видео-обзоре описана конструкция ДРЛ осветителя, подробно изложен принцип действия и отмечены основные нюансы эксплуатации:

Газоразрядные лампы типа ДРЛ по-прежнему используются в уличном освещении. Основной аргумент в пользу ртутных приборов – мощный световой поток и доступная стоимость. Однако их постепенно вытесняют более совершенные лампы, которые наряду с высокой эффективностью могут похвастаться хорошим качеством свечения и безопасностью применения.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, задавайте вопросы и публикуйте фото по теме статьи. Делитесь полезной информацией, которая будет интересна и полезна посетителям сайта. Расскажите о собственном опыте в выборе и в установке газоразрядной лампочки высокого давления.

Пускорегулирующая аппаратура. Виды и устройство. Работа

Аппараты для регулировки пуска начали появляться давно. За последнее время пускорегулирующая аппаратура была сильно изменена и усовершенствована. Не все понимают, насколько выгодна установка таких аппаратов.

Пускорегулирующая аппаратура на основе электронных элементов (ЭПРА) монтируется в приборы освещения. Светильники с таким аппаратом значительно экономят электричество, а также нет необходимости приобретать новые лампы, так как срок службы ламп значительно повышается.

Лампы с ЭПРА светят приятным качественным светом, который благотворно влияет на человека, по крайней мере, не вредит ему. Частота мерцания света таких ламп составляет около 400 Гц. При этом глаза человека меньше устают, нет головной боли.

Свойства и виды
Чаще всего, пускорегулирующая аппаратура делится на два вида:
  1. Единый блок аппаратуры.
  2. Отдельные части аппаратуры.
ЭПРА также можно разделить по видам, учитывая тип лампы:
При рассмотрении свойств функционирования таких аппаратов, их можно разделить на:
  • Электронные.
  • Электромагнитные.
Пускорегулирующая аппаратура по соответствию классов, то ЭПРА делятся на классы:
  • Регулируемые — А 1.
  • Нерегулируемые — А 2.
  • С большими потерями (нерегулируемые) — А 3.

При приобретении светильника с регулирующим пусковым аппаратом необходимо следовать новейшим разработкам и рекомендациям специалистов, так как устройства постоянно обновляются, в них внедряются последние современные новшества, о которых вы можете не знать.

Достоинства

Инновационные модели таких аппаратов дают возможность включиться лампе сразу после разогревания ее электродов. Также, при работе лампы пускорегулирующий аппарат поддерживает оптимальное значение напряжения. Следовательно, расход электроэнергии меньше при применении такого устройства.

Электронные аппараты пуска и регулировки вполне заменяют подобными аналогами. Однако, это тяжелые и шумные дроссели. Они уже практически не используются в таких устройствах. О них будет рассказано ниже.

Пускорегулирующая аппаратура имеет свои особенности и преимущества:
  • Снижение мерцания лампы.
  • Нет сильной вспышки лампы по время неисправности стартера, поэтому срок службы лампы повышается.
  • Обеспечивается освещение со стабильным потоком света.
  • Пусковые электронные аппараты оснащаются регулировкой по мощности, помогающие настроить яркость света в различных помещениях.
  • Экономия энергии в сравнении с обычными источниками света.
  • Безопасность с экологической точки зрения, нет необходимости в специальной особой утилизации, так как не имеют в составе ртути, других вредных и ядовитых веществ.
  • Повышенная надежность, устойчивость к вибрации, прочность из-за того, что конструкция не имеет горелки, нити накала, стеклянной колбы.
  • Не реагирует на скачки напряжения.
  • Во момент запуска не создает перегрузку электрической сети.
  • Сниженный ток потребления, для обычных наружных светильников ток составляет 0,5 ампера, в сравнении с источником света на газоразрядной лампе – 2,2 ампера, а ток запуска – 4,5 ампера.
  • Экономия денежных ресурсов.
  • Возможность функционирования светильников при низких температурах.
Принцип действия
Работу можно разделить на следующие этапы:
  • Разогрев электродов. Они запускаются очень быстро, в течение нескольких долей секунды, создается плавная подача освещения. Этот фактор дает возможность увеличить срок работы лампы до замены. Также, светильники, оснащенные такой аппаратурой, можно включать при пониженных температурах. Это не снижает их срок службы.
  • Вторым этапом является розжиг. При этом создается импульс высокой разности потенциалов. Это дает возможность наполнения колбы газом.
  • Горение – это заключительный этап, поддерживающий постоянное повышенное напряжение, которое нужно для функционирования лампы.
Схема пускорегулирующей аппаратуры

Чаще всего схема состоит из 2-тактного преобразователя напряжения. Конструкция бывает мостовой и полумостовой. Мостовые варианты очень редко применяются.

Сначала диодный мост выпрямляет напряжение, далее оно сглаживается емкостью до постоянного напряжения. Полумостовой инвертор делает напряжение высокочастотным. В схеме применяется трансформатор с сердечником в виде тора с тремя катушками. Основная обмотка подает изменяющееся напряжение резонанса на лампу. Остальные работают в качестве дополнительных обмоток, которые в противофазе открывают ключи на транзисторах.

В результате, перед запуском лампы, наибольший ток разогревает обе нити лампы, а напряжение на емкости включает лампу. Она светит и не изменяет частоту с самого начала. Время запуска лампы составляет не более одной секунды.

ЭПРА со светодиодами

Многие приборы освещения применяются с пускорегулятором. Рассмотрим, какие достоинства применения ЭПРА в модулях светодиодов.

Основным положительным моментом здесь является тот факт, что осуществляется защита устройства от сильных перепадов напряжения и электромагнитных помех. Другими словами, пускорегулирующая аппаратура защищает светодиодный модуль от капризов поведения питающей сети.

Кроме этого, происходит экономия расхода энергии в пределах 30%, поэтому это играет большую роль в применении ЭПРА. Электричество экономится за счет того, что теперь не нужно часто менять стартеры, которые очень часто выходят из строя, в отличие от ПРА.

Производители
Пускорегулирующая аппаратура выбирается большинством потребителей. Наиболее популярными изготовителями приборов освещения с ЭПРА стали следующие фирмы:
  • Helvar – начало выпуска изделий в 1921 г. С самого начала фирма показала себя наиболее надежной в выпуске радиотехники, наладила выпуск пускорегулирующих устройств, выпуск продолжается до настоящего времени. Страна фирмы изготовителя – Финляндия.
  • Tridonic – является одной из лидирующих фирм в производстве аппаратуры для освещения. Фирма в конце 70-х годов начала производство своей продукции, которая до сих пор прославляет качество австрийских товаров.
  • Osram – гигантская фирма в сфере выпуска приборов освещения и комплектующих элементов к ним.

Эти именитые производители выпускают недешевую продукцию, но это оправдывается качеством. Хотя, подобные товары других фирм можно приобрести намного дешевле.

Порядок выбора

Перед покупкой пускорегулятора нужно сначала правильно выбрать производителя. Наиболее популярными являются сегодня фирмы, которые мы рассмотрели выше. Но, выбрав устройство одной из этих фирм, нет гарантии того, что выбранный аппарат не станет причиной неисправности вашего источника света, так как кроме изготовителя, нужно обращать внимание и на другие моменты.

Особое внимание необходимо обращать на такие параметры и свойства:
  • Тип применяемых ламп.
  • Мощность ламп.
  • Условия окружающей среды (указаны в инструкции к устройству).
Электромагнитная пускорегулирующая аппаратура

Простые электромагнитные пускорегуляторы (ЭМПРА) включают в себя обычное индуктивное сопротивление, состоящее из металлического сердечника, на который намотан медный провод. Применение такого вида сопротивления обуславливает к значительной потере мощности и выделению теплоты. Мощность функционирующей с пускорегулятором лампы на 26 ватт для сети обходится в 32 ватта. Это значит, что потери мощности равны 6 ваттам, это 23%.

Есть несколько методов применения:
  • Со стартером.
  • Без стартера.
  • С ограничением температуры.
Принцип действия ЭМПРА

Схема электромагнитного пускорегулирующего аппарата со стартером считается наиболее дешевой и простой.

При включении питания напряжение по обмотке дросселя и нити накала идет к электродам стартера. Он выполнен в виде небольшой лампы с газовым разрядом. Напряжение образует тлеющий разряд, инертный газ начинает светиться и нагревать его среду. Биметаллический датчик включает контакты и в цепи образуется замкнутый контур, с помощью которого нагревается нить люминесцентной лампы. Создается термоэлектронная эмиссия. Вместе с этим нагреваются пары ртути, расположенные в колбе.

Напряжение на электродах стартера и разряд уменьшаются, температура понижается. Биметаллическая пластина размыкает цепь между электродами и ток прекращается. В дросселе образуется ЭДС самоиндукции, создающая кратковременный разряд между нитями накала.

Величина разряда может достигать нескольких тысяч вольт, которые пробивают инертный газ с парами ртути, возникает дуга, которая и является источником света.

Стартер в дальнейшей работе не принимает участие. После запуска светильника ток нуждается в ограничении, иначе перегорят элементы схемы. Эту задачу выполняет дроссель, индуктивное сопротивление которого ограничивает увеличение тока, не дает лампе выйти из строя.

Достоинства использования ЭМПРА с источником света:
  • Равномерный и быстрый запуск.
  • Нет мерцания.
  • Повышение срока работы лампы.
  • Повышенный КПД.
  • Улучшенная защита от удара током.
  • Коэффициент мощности составляет выше 0,9.
  • Главное достоинство – низкая цена.
Недостатки ЭМПРА:
  • Большие габариты и масса.
  • Значительные потери мощности, особенно для люминесцентных ламп.
  • Частота потока света составляет 100 герц, это влияет через подсознание на человека. Импульсы света образуют эффект стробоскопа, когда детали и предметы, движущиеся с частотой, совпадающей с пульсацией света, представляются для человека неподвижными. Это может негативно отразиться на повышении травматизма на производстве.
  • Свет не управляется, это создает ограничение в комфортных условиях.
  • Дроссели издают гул, неприятный для человека звук.

Чтобы устранить эти недостатки, для люминесцентных ламп самым действенным способом оказалось подключение ламп к току высокой частоты. Для создания такого подключения последовательно с лампой включают балласт в виде электронного устройства, которое переделывает напряжение одной частоты в другую, и обеспечивает запуск ламп. Эти устройства называются электронная пускорегулирующая аппаратура (ЭПРА).

Добавить комментарий