Варианты гидравлического расчета водопроводных сетей

Гидравлический расчет водопроводной сети

Определениедиаметров труб. Гидравлический расчет водопроводной сети заключается в определении диаметров труб и потерь напора на преодоление сопротивления в трубах при пропуске по ним расчетного количества воды. Знание потерь напора необходимо также для расчета высоты водонапорных башен, а также для выбора насоса с требуемой напорной характеристикой.

Расход воды определяется количеством и составом водопотребителей, а также принятыми строительными нормами и правилами водопотребления (СНиП).

Расчет водопотребления производится с целью определения численных значений среднесуточного расхода Qср.сут, максимального суточного расхода Qmaxсут и максимального часового расхода Qmaxчас с учетом затрат воды на поение животных и на производственно-технические нужды. В расчетах также необходимо учесть расход воды на тушение возможного пожара и создание в системе минимально необходимого запаса (на случай отключения электроэнергии, наложения карантина при эпизоотии и т. п.). Для расчета необходимо знать среднесуточные нормы водопотребления, состав и количество водопотребителей каждого вида.

Нормой водопотребления называется количество воды в литрах, расходуемоеодним потребителем в сутки. Применительно к животным она включает расходы на поение, мойку помещений, молочной посуды, приготовление кормов, охлаждение молока и др. Расход воды на фермах очень неравномерен как в течение года (по сезонам), так и в течение суток (по часам). Его колебания оцениваются соответствующими коэффициентами неравномерности: для животноводческого сектора kсут = 1,3 и kч = 2,5; для жилищно-коммунального сектора в сельской местности kсут = 1,2…1,4 и kч = 1,5…2,0.

Среднесуточный расход воды на ферме Qср.сут, м 3 /сут, определяется по формуле

, (1.1)

где ni – число потребителей i-гo вида; qi – среднесуточная норма потребления воды i-м потребителем, л/сут; N – общее число потребителей.

Максимальный суточный расход воды Qmaxсут определяется из равенства

, (1.2)

где kсут – коэффициент суточной неравномерности.

В сутки максимального водопотребления среднечасовой расход Qср.ч, м 3 /ч, составит

, (1.3)

а максимальный часовой расход Qmaxчас, м 3 /ч, будет

, (1.4)

где kч – коэффициент часовой неравномерности.

Для обоснования выбора насосов и расчета поточных линий требуется знать секундный расход Qmaxс, м 3 /с, который рассчитывается по формуле

. (1.5)

Запас воды на противопожарные нужды предусматривает быструю и бесперебойную подачу ее к месту возникновения пожара в достаточном количестве и с необходимым напором в течение 3 ч.

Если дебит источника водоснабжения недостаточен для тушения пожара, то на ферме предусматривается устройство специальных резервуаров для хранения неприкосновенного трехчасового запаса воды. Расход воды на наружное тушение одного пожара через гидранты для зданий объемом от 3 до 5 тыс. м 3 принимают равным 10…20 л/с. В фермских водопроводах низкого давления необходимый напор для тушения пожара создается с помощью передвижных пожарных насосов, которые присоединяются к пожарным гидрантам наружной водопроводной сети.

Для объектов с пожарным расходом более 20 л/с потраченный на тушение пожара неприкосновенный запас воды в резервуарах должен быть восстановлен в течение 24 ч, а для объектов с пожарным расходом менее 20 л/с – в течение 36 ч.

В качестве примера рассмотрим схему внутреннего водопровода в животноводческом помещении, а именно в свинарнике-откормочнике комплекса по выращиванию и откорму 54 тыс. свиней в год (т. п. 802–142), показанную на рис. 1.6. На комплексе сектор откорма состоит из пяти свинарников, в которых размещены 18 000 голов секциями в групповых станках по 25 голов. В свинарнике установлены 146 автопоилок. Внутренняя кольцевая сеть собрана из труб диаметром 50 мм и размещена на высоте 3,02 м от пола свинарника. Автопоилки и поливочные вентильные краны присоединены к кольцевой сети отводами (спусками) из труб диаметром 25 и 15 мм. Кроме того, в свинарнике установлено 12 смывных баков вместимостью по 1000 л для удаления жидкого навоза из каналов самотечной системы, в которые вода из баков подается по трубам диаметром 80 мм.

Главный магистральный трубопровод, питающий водой все внутренние водопроводы комплекса, выполнен из стальных труб диаметром 200 мм и проложен в поперечной галерее, устроенной в коридоре, который проходит через все его свинарники. Вода в магистральный трубопровод поступает из наружной сети с двух сторон: со стороны входа в коридор и со стороны выхода из него. К числу водопотребителей в каждом свинарнике относятся также душевые помещения и санузлы.

1 – баки для смыва навоза; 2 – поливочные краны; 3 – автопоилки; 4 – задорный кран (вентиль); 5 – кольцевая сеть внутреннего водопровода

Рисунок 1.6 – Схема внутреннего водопровода в свинарнике-откормочнике комплекса по выращиванию 54 тыс. голов

Для гидравлического расчета на основании генерального плана хозяйства составляют расчетную схему водопроводной сети, на которую по участкам наносятся исходные данные: секундные расходы воды каждым участком qyчi, л/с; длина каждого участка , м; геодезические отметки потребителей (высоты) zi, м, и все устанавливаемые, приборы и сооружения. Расход воды определяется суммированием секундных расходов всех потребителей qni, л/с, расположенных на каждом i-м участке.

Расчетная схема тупиковой сети показана на рисунке 1.7. На ней начальные и конечные точки участков обозначены номерами по ходу движения воды.

Для расчета водопроводных сетей важно уяснить, что по всем участкам, кроме конечных (тупиков), идут два потока с путевым расходом qn, достаточным для удовлетворения потребителей, расположенных на рассматриваемом участке, и с транзитным расходом qT, предназначенным для потребителей, расположенных по ходу потока за рассматриваемым участком. Поэтому расход воды в начале любого участка сети равен сумме путевого и транзитного расходов. Через конечную точку каждого расчетного участка проходит только транзитный расход, так как весь его путевой расход уже израсходован. На следующем участке, расположенном вслед за рассматриваемым, снова будут два расхода: путевой – для потребителей нового участка; транзитный, уменьшенный на величину путевого расхода этого участка.

l – длина участка; q – расчетный расход участка

Рисунок 1.7 – Расчетная схема тупиковой водопроводной сети

Таким образом, в любом сечении расчетного участка расход, проходящий по участку, будет изменяться от до . Расчетный расход линии находится из равенства

, (1.6)

где а – коэффициент, учитывающий соотношение значений транзитного и путевого расходов, зависящий от равномерности (по длине) забора воды из линии потребителями; значение а принимают равным 0,5, тогда

, (1.7)

Суммируя среднесуточные расходы с учетом норм водопот-ребления по всем потребителям, можно рассчитать, пользуясь формулой (1.7), суточный расход воды по всему объекту (ферме, комплексу).

Диаметр трубы каждого из участков водопроводной сети определяют по расчетному расходу на i-м участке.

При этом используют уравнение

, (1.8)

где Fi площадь i-го живого сечения напорной трубы, м 2 ; v – скорость движения воды, м/с.

Из зависимости (1.8) получают формулу для определения диаметра трубы D, на i-м участке:

. (1.9)

Скорость движения воды в трубах диаметром 50…300 мм принимают равной 0,7…1,0 м/с; для труб диаметром 300…1000 мм – от 1,0 до 1,5 м/с. Диаметры труб наружных сетей можно выбирать, пользуясь данными, приведенными в табл. 1.5.

Потери напора в трубах.Напор – это гидравлическое давление в водопроводной сети, выраженное через высоту водяного столба в метрах. При анализе работы трубопровода различают потери на трение по длине и местные потери (в задвижках, кранах, отводах и т. п.), вызываемые изменением скорости или направления потока воды.

Применительно к водопроводным трубам круглого сечения потери напора на трение hT по длине выражают через скорость v или расход Q и их значения определяют соответственно по формулам

, (1.10)

, (1.11)

где hТ – потери напора на трение по длине трубопровода, м; λ – коэффициент гидравлического сопротивления, зависящий от материала труб, степени шероховатости их стенок и диаметра (для приближенных расчетов можно принимать λ = 0,03); v – скорость движения воды в трубах, м/с; l – длина трубопровода, м; D – диаметр трубопровода, м; Q – секундный расход воды, м 3 /с; g = 9,81 м/с 2 – ускорение свободного падения.

Для расчетов определяют потери напора на единицу длины трубопровода (на 1, 100, 1000 м), называемые гидравлическим уклоном, который находят из формулы

, (1.12)

Потери напора в местных сопротивлениях hМ определяют, пользуясь выражением

, (1.13)

где ξ – безразмерный коэффициент местного сопротивления; v – скорость движения воды за местным сопротивлением, м/с.

В протяженных водопроводных сетях потери в местных сопротивлениях оценивают как 3…5 (в наружных) и 5…10% (во внутренних) от всех линейных потерь на трение.

Полные потери напора в трубопроводе определяются как сумма потерь на трение по длине и потерь в местных сопротивлениях, т. е.

. (1.14)

Для нормальной работы водоразборных приборов в каждом пункте сети должен оставаться еще некоторый запас напора, называемый свободным напором. В наружной водопроводной сети на фермах свободный напор соглсно СНиП быть не менее 10м. Для водопроводной сети соответствующие значения должны быть не менее 4 м для автопоилок и 2 м для водоразборных кранов. Свободные напоры на вводах в производственные помещения устанавливают в соответствии с расходами воды, которые они обеспечивают.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 9080 – | 7692 – или читать все.

2.1. Пример гидравлического расчета водопроводной сети

Рассмотрим гидравлический расчет на примере водопроводной сети, показанной на рис. 2.2. Для приведенного в разделе 1 примера общий расход воды в час максимального водопотребления составляет 208,23 л/с, в том числе сосредоточенный расход предприятия равен 24,04 л/с, а сосредоточенный расход общественного здания 0,77 л/с.

Рис. 2.2. Расчётная схема водопроводной сети

1. Определим равномерно распределенный расход:

2.Определим удельный расход:

3. Определим путевые отборы:

Результаты приведены в таблице 2.2.

Длина участка, м

Путевой отбор, л/с

4. Определим узловые расходы:

Аналогично определяем расходы воды для каждого узла. Результаты приведены в таблице 2.3.

5 . Добавим к узловым расходам сосредоточенные расходы. К узловому расходу в точке 5 добавляется сосредоточенный расход предприятия, а в точке 3 – сосредоточенный расход общественного здания (вместо точки 3 можно взять любую другую точку). Тогда q5=51,553 л/с, Q3=23,6975 л/с. Величины узлов расходов показаны на рис. 2.3. С учетом сосредоточенных расходов .

Р

ис 2.3. Расчетная схема водопроводной сети с узловыми расходами

6. Выполним предварительное распределение расходов воды по участкам сети. Сделаем это сначала для водопроводной сети при максимальном хозяйственно-производственном водопотреблении (без пожара). Выберем диктующую точку, т.е. конечную точку подачи воды. В данном примере за диктующую точку примем точку 5. Предварительно наметим направления движения воды от точки 1 к точке 5 (направления показаны на рис. 2.3). Потоки воды могут подойти к точке 5 по трем направлениям: первое – 1-2-3-4-5, второе – 1-7-4-5-, третье – 1-7-6-5. Для узла 1 должно выполняться соотношение q1+q1-2+q1-7=Qпос.пр. Величины q1=18,342л/с и Qпос.пр=208,23л/с известны, а q1-2 и q1-7 неизвестны. Задаемся произвольно одной из этих величин. Возьмем, например,q1-2=100л/с.

Расходы воды по другим участкам сети можно определить из следующих соотношений:

В результате получится:

Можно начинать предварительно распределять расходы не с узла 1, а с узла 5. Расходы воды будут уточняться в дальнейшем при выполнении увязки водопроводной сети. Схема водопроводной сети с предварительно распределенными расходами в обычное время показана на рис. 2.4.

Водопроводная сеть с диаметрами, определенными по экономическому фактору и расходам в обычное время (без пожара), кроме того, должна обеспечивать подачу воды для пожаротушения.

При пожаре водопроводная сеть должна обеспечивать подачу воды на пожаротушение при максимальном часовом расходе воды на другие нужды за исключением расходов воды на душ, поливку территории и т.п. (п. 2.21 [4]). Для водопроводной сети, показанной на рис. 2.2, расход воды для пожаротушения следует добавить к узловому расходу в точке 5, где осуществляется отбор воды на промышленное предприятие и которая является наиболее удаленной от места ввода (от точки 1), т.е. . Однако из таблицы водопотребления (табл. 1.3) видно, что без учета расхода воды на душ час максимального водопотребления будет с 9 до 10 часов.

Читайте также:  Для чего предназначена водопроводная труба диаметром 20 мм

К

люч: l, м; d, мм; q. л/с

Рис.2.4. Расчетная схема водопроводной сети с предварительно распределенными расходами при хозяйственно-производственном водопотреблении

Расход воды Q пос.пр=743,03м 3 /ч=206,40 л/с, в том числе сосредоточенный расход предприятия равен Q пр=50,78 м 3 /ч=14,11 л/с, а сосредоточенный расход общественного здания Qоб.зд=3,45 м 3 /ч=0,958 л/с=0,96 л/с.

Поэтому при гидравлическом расчете сети при пожаре:

Т.к. ,то узловые расходы при пожаре будут другие, чем в час максимального водопотребления без пожара. Определим узловые расходы так, как это делалось без пожара. При этом следует учитывать, что сосредоточенными расходами будут:

Равномерно распределенный расход будет равен:

Расчетная схема водопроводной сети с узловыми и предварительно распределенными расходами при пожаре показана на рис. 2.5.

Ключ: 1,м; d, мм; q, л/с

Рис. 2.5. Расчетная схема водопроводной сети с предварительно распределенными расходами при пожаре.

7. Определим диаметры труб участков сети.

Для стальных труб по экономическому фактору Э=0,75 и предварительно распределенным расходам воды по участкам сети при пожаре по приложению 2 определяются диаметры труб участков водопроводной сети:

Следует иметь в виду, что обычно рекомендуют определять диаметры по предварительно распределенным расходам без учета расхода воды на пожаротушение, а затем проверять водопроводную сеть с найденными таким образом диаметрами на возможность пропуска расходов воды при пожаре. При этом в соответствии с п. 2.30 [4] максимальный свободный напор в сети объединенного водопровода не должен превышать 60 м. Если в нашем примере определять диаметры по предварительным расходам при максимальном хозяйственно- производственном водопотреблении (т.е. без учета расхода воды на пожаротушение), то получаются следующие диаметры:

Расчеты показали, что при этих диаметрах потери напора в сети при пожаре более 60 м. Это объясняется тем, что для сравнительно небольших населённых пунктов соотношение расходов воды по участкам водопроводной сети при пожаре и при максимальном хозяйственно-производственном водопотреблении довольно большое.

Поэтому диаметры труб некоторых участков следует увеличить и заново выполнить гидравлический расчет сети при максимальном хозяйственно-производственном водопотреблении и при пожаре.

В связи с вышеизложенным и для упрощения расчетов в курсовом проекте допускается определять диаметры участков сети по предварительным расходам при пожаре.

Гидравлический расчет водопровода: простые методы

Для чего выполняется гидравлический расчет водопроводной сети? Какие именно параметры нуждаются в расчете? Существуют ли какие-то простые схемы расчетов, доступные для новичка? Сразу оговорим: этот материал ориентирован прежде всего на владельцев небольших частных домов; соответственно, такие параметры, как вероятность одновременного использования всех сантехнических приборов в здании, нам определять не нужно.

Как и любая инженерная система, водопровод нуждается в расчете.

Что рассчитывается

Гидравлический расчет внутреннего водопровода сводится к определению следующих параметров:

  1. Расчетного расхода воды на отдельных участках водопровода.
  2. Скорости потока воды в трубах.

Подсказка: для внутренних водопроводов нормой считаются скорости от 0,7 до 1,5 м/с. Для пожарного водопровода допустима скорость до 3 м/с.

  1. Оптимального диаметра водопровода, обеспечивающего приемлемое падение напора. Как вариант – может определяться потеря напора при известном диаметре каждого участка. Если с учетом потерь напор на сантехнических приборах будет меньше нормированного, локальная сеть водоснабжения нуждается в установке подкачки.

Несложный опыт наглядно демонстрирует падение напора в водопроводе.

Расход воды

Нормативы расхода воды отдельными сантехническими приборами можно обнаружить в одном из приложений к СНиП 2.04.01-85, регламентирующему сооружение внутренних водопроводов и канализационных сетей. Приведем часть соответствующей таблицы.

ПриборРасход ХВС, л/сОбщий расход (ХВС и ГВС), л/с
Умывальник (водоразборный кран)0,100,10
Умывальник (смеситель)0,080,12
Мойка (смеситель)0,080,12
Ванна (смеситель)0,170,25
Душевая кабинка (смеситель)0,080,12
Унитаз со сливным бачком0,100,10
Унитаз с краном прямой подачи воды1,41,4
Кран для полива0,30,3

В случае предполагаемого одновременного использования нескольких сантехнических приборов расход суммируется. Так, если одновременно с использованием туалета на первом этаже предполагается работа душевой кабинки на втором – будет вполне логичным сложить расход воды через оба сантехнических прибора: 0,10+0,12=0,22 л/с.

При последовательном подключении приборов расход воды суммируется.

Особый случай

Для пожарных водопроводов действует норма расхода в 2,5 л/сна одну струю. При этом расчетное количество струй на один пожарный гидрант при пожаротушении вполне предсказуемо определяется типом здания и его площадью.

На фото – пожарный гидрант.

Параметры зданияКоличество струй при тушении пожара
Жилое здание в 12 – 16 этажей1
То же, при длине коридора более 10 метров2
Жилое здание в 16 – 25 этажей2
То же, при длине коридора более 10 метров3
Здания управления (6 – 10 этажей)1
То же, при объеме более 25 тыс. м32
Здания управления (10 и более этажей, объем до 25000 м3)2
То же, объем больше 25 тыс. м33
Общественные здания (до 10 этажей, объем 5 – 25 тыс. м3)1
То же, объем больше 25 тыс. м32
Общественные здания (более 10 этажей, объем до 25 тыс. м3)2
То же, объем больше 25 тыс. м33
Администрации предприятий (объем 5 – 25 тыс. м3)1
То же, объем более 25000 м32

Скорость потока

Предположим, что наша задача – гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам нужно определить диаметр, который обеспечит приемлемую скорость движения потока через трубопровод (напомним, 0,7-1,5 м/с).

Большая скорость потока вызывает появление гидравлических шумов.

Формулы

Расход воды, скорость ее потока и размер трубопровода увязываются друг с другом следующей последовательностью формул:

  • S – площадь сечения трубы в квадратных метрах;
  • π – число “пи”, принимаемой равным 3,1415;
  • r – радиус внутреннего сечения в метрах.

Полезно: для стальных и чугунных труб радиус обычно принимается равным половине их ДУ (условного прохода).
У большинства пластиковых труб внутренний диаметр на шаг меньше номинального наружного: так, у полипропиленовой трубы наружным диаметром 40 мм внутренний приблизительно равен 32 мм.

Условный проход примерно соответствует внутреннему диаметру стальной трубы.

  • Q – расход воды (м3);
  • V – скорость водяного потока (м/с) ;
  • S – площадь сечения в квадратных метрах.

Пример

Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.

Как мы уже выяснили, в этом случае скорость водяного потока ограничена м/с.

  1. Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
  2. Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
  3. Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
  4. Внутренний диаметр трубопровода, таким образом, должен быть равен как минимум 0,016 х 2 = 0,032 м, или 32 миллиметра. Это соответствует параметрам стальной трубы ДУ32.

Обратите внимание: при получении промежуточных значений между стандартными размерами труб округление выполняется в большую сторону.
Цена труб с диаметром, отличающимся на шаг, различается не слишком сильно; между тем уменьшение диаметра на 20% влечет за собой почти полуторакратное падение пропускной способности водопровода.

Пропускная способность первой и третьей труб различается вчетверо.

Простой расчет диаметра

Для быстрого расчета может использоваться следующая таблица, непосредственно увязывающая расход через трубопровод с его размером.

Расход, л/сМинимальный ДУ трубопровода, мм
0,210
0,615
1,220
2,425
432
640
1050

Потеря напора

Формулы

Инструкция по расчету потери напора на участке известной длины довольно проста, но подразумевает знание изрядного количества переменных. К счастью, при желании их можно найти в справочниках.

Формула имеет вид H = iL(1+K).

  • H – искомое значение потери напора в метрах.

Справка: избыточное давление в 1 атмосферу (1 кгс/см2) при атмосферном давлении соответствует водяному столбу в 10 метров.
Для компенсации падения напора в 10 метров, таким образом, давление на входе в водораспределительную сеть нужно поднять на 1 кгс/см2.

  • i – гидравлический уклон трубопровода.
  • L – его длина в метрах.
  • K – коэффициент, зависящий от назначения сети.

Формула сильно упрощена. На практике изгибы трубопровода и запорная арматура тоже вызывают падение напора.

Некоторые элементы формулы явно требуют комментариев.

Проще всего с коэффициентом К. Его значения заложены в уже упоминавшийся нами СНиП за номером 2.04.01-85:

Назначение водопроводаЗначение коэффициента
Хозяйственно-питьевой0,3
Производственный, хозяйственно-противопожарный0,2
Производственно-противопожарный0,15
Противопожарный0,1

А вот с понятием гидравлического уклона куда сложнее. Он отражает то сопротивление, которое труба оказывает движению воды.

Гидравлический уклон зависит от трех параметров:

  1. Скорости потока. Чем она выше, тем больше гидравлическое сопротивление трубопровода.
  2. Диаметра трубы. Здесь зависимость обратная: уменьшение сечения приводит к росту гидравлического сопротивления.
  3. Шероховатости стенок. Она, в свою очередь, зависит от материала трубы (сталь обладает менее гладкой поверхностью по сравнению с полипропиленом или ПНД) и, в некоторых случаях, от возраста трубы (ржавчина и известковые отложения увеличивают шероховатость).

К счастью, проблему определения гидравлического уклона полностью решает таблица гидравлического расчета водопроводных труб (таблица Шевелева). В ней приводятся значения для разных материалов, диаметров и скоростей потока; кроме того, таблица содержит коэффициенты поправок для старых труб.

Уточним: поправки на возраст не требуются всем типам полимерных трубопроводов.
Металлопластик, полипропилен, обычный и сшитый полиэтилен не меняют структуру поверхности весь период эксплуатации.

Размер таблиц Шевелева делает невозможной их публикацию целиком; однако для ознакомления мы приведем небольшую выдержку из них.

Вот справочные данные для пластиковой трубы диаметром 16 мм.

Расход в литрах в секундуСкорость в метрах в секунду1000i (гидравлический уклон для протяженности в 1000 метров)
0,080,7184
0,090,8103,5
0,10,88124,7
0,131,15198,7
0,141,24226,6
0,151,33256,1
0,161,41287,2
0,171,50319,8

При расчете падения напора нужно учитывать, что большая часть сантехнических приборов для нормальной работы требует определенного избыточного давления. В СНиП тридцатилетней давности приводятся данные для устаревшей сантехники; более современные образцы бытовой и санитарной техники требуют для нормальной работы избыточного давления, равного как минимум 0,3 кгс/см (3 метра напора).

Датчик не даст проточному нагревателю включиться при давлении воды ниже 0,3 кгс/см2.

Однако: на практике лучше закладывать в расчет несколько большее избыточное давление – 0,5 кгс/см2.
Запас нужен для компенсации неучтенных потерь на подводках к приборам и их собственного гидравлического сопротивления.

Примеры

Давайте приведем пример гидравлического расчета водопровода, выполненного своими руками.

Предположим, что нам нужно вычислить потерю напора в домашнем пластиковом водопроводе диаметром 15 мм при его длине в 28 метров и максимально допустимой скорости потока воды, равной 1,5 м/с.

Трубы этого размера чаще всего используются для разводки воды в пределах квартиры или небольшого коттеджа.

  1. Гидравлический уклон для длины в 1000 метров будет равным 319,8. Поскольку в формуле расчета падения напора используется i, а не 1000i, это значение следует разделить на 1000: 319,8 / 1000 = 0,3198.
  2. Коэффициент К для хозяйственно-питьевого водопровода будет равным 0,3.
  3. Формула в целом приобретет вид H = 0,3198 х 28 х (1 + 0,3) = 11,64 метра.

Таким образом, избыточное давление в 0,5 атмосферы на концевом сантехническом приборе мы будем иметь при давлении в магистральном водопроводе в 0,5+1,164=1,6 кгс/см2. Условие вполне выполнимо: давление в магистрали обычно не ниже 2,5 – 3 атмосфер.

К слову: испытания водопровода при сдаче в эксплуатацию проводятся давлением, как минимум равным рабочему с коэффициентом 1,3.
Акт гидравлических испытаний водопровода должен включать отметки как об их продолжительности, так и об испытательном давлении.

Образец акта гидравлических испытаний.

Читайте также:  По каким критериям выбирать шланг для насосной станции

А теперь давайте выполним обратный расчет: определим минимальный диаметр пластикового трубопровода, обеспечивающего приемлемое давление на концевом смесителе для следующих условий:

  • Давление в трассе составляет 2,5 атмосферы.
  • Протяженность водопровода до концевого смесителя равна 144 метрам.
  • Переходы диаметра отсутствуют: весь внутренний водопровод будет монтироваться одним размером.
  • Пиковый расход воды составляет 0,2 литра в секунду.
  1. Допустимая потеря давления составляет 2,5-0,5=2 атмосферы, что соответствует напору в 20 метров.
  2. Коэффициент К и в этом случае равен 0,3.
  3. Формула, таким образом, будет иметь вид 20=iх144х(1+0,3). Несложный расчет даст значение i в 0,106. 1000i, соответственно, будет равным 106.
  4. Следующий этап – поиск в таблице Шевелева диаметра, соответствующего 1000i = 106 при искомом расходе. Ближайшее значение – 108,1 – соответствует диаметру полимерной трубы в 20 мм.

Зависимость между внутренним и наружным диаметром полипропиленового трубопровода.

Заключение

Надеемся, что не переутомили уважаемого читателя избытком цифр и формул. Как уже упоминалось, нами приведены предельно простые схемы расчетов; профессионалы вынуждены использовать куда более сложные решения. Как обычно, дополнительная тематическая информация найдется в видео в этой статье. Успехов!

Гидравлический расчет водопровода: простые способы

Для чего выполняется гидравлический расчет водопроводной сети? Какие конкретно как раз параметры нуждаются в расчете? Существуют ли какие-то простые схемы расчетов, доступные для новичка? Сходу оговорим: данный материал ориентирован в первую очередь на обладателей маленьких частных домов; соответственно, такие параметры, как возможность одновременного применения всех сантехнических устройств в здании, нам определять не требуется.

Что рассчитывается

Гидравлический расчет внутреннего водопровода сводится к определению следующих параметров:

  1. Расчетного расхода воды на отдельных участках водопровода.
  2. Скорости потока воды в трубах.

Подсказка: для внутренних водопроводов нормой считаются скорости от 0,7 до 1,5 м/с. Для пожарного водопровода допустима скорость до трех метров/с.

  1. Оптимального диаметра водопровода, снабжающего приемлемое падение напора. Как вариант – может определяться утрата напора при известном диаметре каждого участка. В случае если с учетом утрат напор на сантехнических устройствах будет меньше нормированного, локальная сеть водоснабжения испытывает недостаток в установке подкачки.

Расход воды

Нормативы расхода воды отдельными сантехническими устройствами возможно найти в одном из приложений к СНиП 2.04.01-85, регламентирующему сооружение внутренних канализационных сетей и водопроводов. Приведем часть соответствующей таблицы.

ПриборРасход ХВС, л/сНеспециализированный расход (ХВС и ГВС), л/с
Умывальник (водоразборный кран)0,100,10
Умывальник (смеситель)0,080,12
Мойка (смеситель)0,080,12
Ванна (смеситель)0,170,25
Душевая кабинка (смеситель)0,080,12
Унитаз со сливным бачком0,100,10
Унитаз с краном прямой подачи воды1,41,4
Кран для полива0,30,3

При предполагаемого одновременного применения нескольких сантехнических устройств расход суммируется. Так, в случае если в один момент с применением туалета на первом этаже предполагается работа душевой кабинки на втором – будет в полной мере логичным сложить расход воды через оба сантехнических прибора: 0,10+0,12=0,22 л/с.

Особенный случай

Для пожарных водопроводов действует норма расхода в 2,5 л/сна одну струю. Наряду с этим расчетное количество струй на один пожарный гидрант при пожаротушении в полной мере предсказуемо определяется его площадью и типом здания.

Параметры зданияКоличество струй при тушении пожара
Жилое здание в 12 – 16 этажей1
То же, при длине коридора более 10 метров2
Жилое здание в 16 – 25 этажей2
То же, при длине коридора более 10 метров3
Здания управления (6 – 10 этажей)1
То же, при объеме более 25 тыс. м32
Здания управления (10 и более этажей, количество до 25000 м3)2
То же, количество больше 25 тыс. м33
Публичные сооружения (до 10 этажей, количество 5 – 25 тыс. м3)1
То же, количество больше 25 тыс. м32
Публичные сооружения (более 10 этажей, количество до 25 тыс. м3)2
То же, количество больше 25 тыс. м33
Администрации фирм (количество 5 – 25 тыс. м3)1
То же, количество более 25000 м32

Скорость потока

Предположим, что наша задача – гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам необходимо выяснить диаметр, который обеспечит приемлемую скорость перемещения потока через трубопровод (напомним, 0,7-1,5 м/с).

Формулы

Расход воды, скорость ее потока и размер трубопровода увязываются между собой следующей последовательностью формул:

  • S – площадь сечения трубы в квадратных метрах;
  • ? – число “пи”, принимаемой равным 3,1415;
  • r – радиус внутреннего сечения в метрах.

Полезно: для металлических и чугунных труб радиус в большинстве случаев принимается равным половине их ДУ (условного прохода). У многих пластиковых труб внутренний диаметр на ход меньше номинального наружного: так, у полипропиленовой трубы наружным диаметром 40 мм внутренний примерно равен 32 мм.

  • Q – расход воды (м3);
  • V – скорость водяного потока (м/с) ;
  • S &очень плохо;#8212; площадь сечения в квадратных метрах.

Пример

Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.

Как мы уже узнали, в этом случае скорость водяного потока ограничена м/с.

  1. Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
  2. Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
  3. Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
  4. Внутренний диаметр трубопровода, так, должен быть равен как минимум 0,016 х 2 = 0,032 м, либо 32 миллиметра. Это соответствует параметрам металлической трубы ДУ32.

Обратите внимание: при получении промежуточных значений между стандартными размерами труб округление выполняется в громадную сторону. Цена труб с диаметром, отличающимся на ход, различается не через чур очень сильно; в это же время уменьшение диаметра на 20% влечет за собой практически полуторакратное падение пропускной свойстве водопровода.

Несложный расчет диаметра

Для стремительного расчета может употребляться следующая таблица, конкретно увязывающая расход через трубопровод с его размером.

Расход, л/сМинимальный ДУ трубопровода, мм
0,210
0,615
1,220
2,425
432
640
1050

Утрата напора

Формулы

Инструкция по расчету утраты напора на участке известной длины достаточно несложна, но подразумевает знание изрядного количества переменных. К счастью, при жажде их возможно отыскать в справочниках.

Формула имеет форму H = iL(1+K).

  • H – искомое значение утраты напора в метрах.

Справка: избыточное давление в 1 атмосферу (1 кгс/см2) при атмосферном давлении соответствует водяному столбу в 10 метров. Для компенсации падения напора в 10 метров, так, давление на входе в водораспределительную сеть необходимо поднять на 1 кгс/см2.

  • i – гидравлический уклон трубопровода.
  • L – его протяженность в метрах.
  • K – коэффициент, зависящий от назначения сети.

Кое-какие элементы формулы очевидно требуют комментариев.

Несложнее всего с коэффициентом К. Его значения заложены в уже упоминавшийся нами СНиП за номером 2.04.01-85:

Назначение водопроводаЗначение коэффициента
Хозяйственно-питьевой0,3
Производственный, хозяйственно-противопожарный0,2
Производственно-противопожарный0,15
Противопожарный0,1

А вот с понятием гидравлического уклона намного сложнее. Он отражает то сопротивление, которое труба оказывает перемещению воды.

Гидравлический уклон зависит от трех параметров:

  1. Скорости потока. Чем она выше, тем больше гидравлическое сопротивление трубопровода.
  2. Диаметра трубы. Тут зависимость обратная: уменьшение сечения ведет к росту гидравлического сопротивления.
  3. Шероховатости стенок. Она, со своей стороны, зависит от материала трубы (сталь владеет менее ровной поверхностью если сравнивать с полипропиленом либо ПНД) и, в некоторых случаях, от возраста трубы (известковые отложения и ржавчина увеличивают шероховатость).

К счастью, проблему определения гидравлического уклона всецело решает таблица гидравлического расчета водопроводных труб (таблица Шевелева). В ней приводятся значения для различных материалов, скоростей и диаметров потока; помимо этого, таблица содержит коэффициенты поправок для ветхих труб.

Уточним: поправки на возраст не требуются всем типам полимерных трубопроводов. Металлопластик, полипропилен, простой и сшитый полиэтилен не меняют структуру поверхности целый период эксплуатации.

Размер таблиц Шевелева делает неосуществимой их публикацию полностью; но для ознакомления мы приведем маленькую выдержку из них.

Вот справочные данные для пластиковой трубы диаметром 16 мм.

Расход в литрах в секундуСкорость в метрах в секунду1000i (гидравлический уклон для протяженности в 1000 метров)
0,080,7184
0,090,8103,5
0,10,88124,7
0,131,15198,7
0,141,24226,6
0,151,33256,1
0,161,41287,2
0,171,50319,8

При расчете падения напора необходимо учитывать, что большинство сантехнических устройств для обычной работы требует определенного избыточного давления. В СНиП тридцатилетней давности приводятся данные для устаревшей сантехники; более современные образцы бытовой и санитарной техники требуют для обычной работы избыточного давления, равного как минимум 0,3 кгс/см (3 метра напора).

Но: на практике лучше закладывать в расчет пара большее избыточное давление – 0,5 кгс/см2. Запас нужен для компенсации неучтенных утрат на подводках к устройствам и их собственного гидравлического сопротивления.

Примеры

Давайте приведем пример гидравлического расчета водопровода, выполненного своими руками.

Предположим, что нам необходимо вычислить утрату напора в домашнем пластиковом водопроводе диаметром 15 мм при его длине в 28 метров и максимально допустимой скорости потока воды, равной 1,5 м/с.

  1. Гидравлический уклон для длины в 1000 метров будет равным 319,8. Потому, что в формуле расчета падения напора употребляется i, а не 1000i, это значение направляться поделить на 1000: 319,8 / 1000 = 0,3198.
  2. Коэффициент К для хозяйственно-питьевого водопровода будет равным 0,3.
  3. Формула в целом купит вид H = 0,3198 х 28 х (1 + 0,3) = 11,64 метра.

Так, избыточное давление в 0,5 атмосферы на концевом сантехническом приборе мы будем иметь при давлении в магистральном водопроводе в 0,5+1,164=1,6 кгс/см2. Условие в полной мере выполнимо: давление в магистрали в большинстве случаев не ниже 2,5 – 3 атмосфер.

К слову: опробования водопровода при сдаче в эксплуатацию проводятся давлением, как минимум равным рабочему с коэффициентом 1,3. Акт гидравлических опробований водопровода обязан включать отметки как об их длительности, так и об испытательном давлении.

А сейчас давайте выполним обратный расчет: определим минимальный диаметр пластикового трубопровода, снабжающего приемлемое давление на концевом смесителе для следующих условий:

  • Давление в автостраде образовывает 2,5 атмосферы.
  • Протяженность водопровода до концевого смесителя равна 144 метрам.
  • Переходы диаметра отсутствуют: целый внутренний водопровод будет монтироваться одним размером.
  • Пиковый расход воды образовывает 0,2 литра в секунду.

  1. Допустимая утрата давления образовывает 2,5-0,5=2 атмосферы, что соответствует напору в 20 метров.
  2. Коэффициент К и в этом случае равен 0,3.
  3. Формула, так, будет иметь вид 20=iх144х(1+0,3). Несложный расчет даст значение i в 0,106. 1000i, соответственно, будет равным 106.
  4. Следующий этап – поиск в таблице Шевелева диаметра, соответствующего 1000i = 106 при искомом расходе. Ближайшее значение – 108,1 – соответствует диаметру полимерной трубы в 20 мм.

Заключение

Сохраняем надежду, что не переутомили глубокоуважаемого читателя избытком формул и цифр. Как уже упоминалось, нами приведены предельно простые схемы расчетов; специалисты вынуждены применять куда более сложные решения. Как в большинстве случаев, дополнительная тематическая информация найдется в видео в данной статье. Удач!

5.5. Принципы гидравлического расчета водопроводных сетей

Водопроводная сеть является одной из главных частей системы водоснабжения.

Водопроводная сеть состоит из магистральных и распределительных трубопроводов. Магистральные трубопроводы (линии) в основном осуществляют транспортировку воды, а распределительные трубопроводы обеспечивают подачу воды из магистральных линий непосредственно на объекты водопотребления.

Магистральные линии водопроводных сетей по своей форме подразделяются на разветвленные (тупиковые) и кольцевые (замкнутые). Водопроводная сеть должна удовлетворять следующим основным требованиям: достаточно оптимальное обеспечение заданных расходов к местам водопотребления; надежность эксплуатации и экономичность.

Читайте также:  Какие существуют системы подготовки и очистки питьевой воды и как выбрать подходящую

Выбор диаметров труб участков водопроводной сети производится с учетом скоростей в трубопроводе, соответствующих экономически наивыгоднейшим диаметрам. Расход воды, сосредоточенный в определенной узловой точке магистрального трубопровода, называется узловым расходом Q.

Расход, достаточно равномерно распределенный на участке сети между узловыми точками, – путевой расход . В начале участка сети путевой расход максимальный, а в конце его он равен нулю. Путевой расход, приходящийся на единицу длины участка, называют удельным расходом . Удельный расход

, (5.28)

где – длина участка, на котором происходит водоразбор.

Величина удельных путевых расходов зависит от конкретных объектов, осуществляющих водопотребление, а также от различных моментов работы сети.

Расход воды, проходящий через участок без использования его на водопотребление и следующий на другой участок сети, является транзитным расходом . Транзитный расход постоянен по длине участка магистральной сети.

При гидравлических расчетах определенного участка сети принимается расчетный расход . Расчетный расход учитывает постоянный транзитный и переменный путевой расходы.

Расчетный расход находится по следующей формуле:

, (5.29)

где – коэффициент, зависящий от соотношения значений транзитного и путевого расходов, а также от равномерности распределения водозабора на участке сети длиной.

В целях упрощения гидравлического расчета трубопроводов сети принимается .

Узловой расход в определенной точке равен половине путевых расходов участков, которые примыкают к узлу:

. (5.30)

Разветвленная тупиковая водопроводная сеть

В разветвленной водопроводной сети расход, поступающий к каждой водозаборной точке, осуществляется с одной стороны. Разветвленная сеть состоит из главной магистральной линии и присоединенных к ней ответвленных участков трубопровода, обеспечивающих подачу воды к конечным водозаборным точкам.

Рис. 5.11. Схема разветвленной сети

На рис. 5.11 изображена схема разветвленной тупиковой сети, точками обозначены узловые точки. Участки сети длиной располагаются между точками. Точка 1 является началом разветвленной водопроводной сети. В данной точке может быть установлена насосная станция или водонапорная башня.

При расчете разветвленных водопроводных сетей должны быть известны длины . участков между узловыми точками, расходы воды в узловых точках, удельные путевые расходы на определенных участках, геодезические отметки расположения узловых точек и свободные напоры в узловых конечных точках.

Расчет разветвленной сети начинается с выбора главной магистральной линии. Главная магистраль (см. рис. 5.11), начинается в точке сети 1 и соединяется с самой удаленной концевой точкой, например 8, имеющей наибольшую геодезическую высоту . Магистраль должна обеспечить суммарный расход, необходимый для подачи воды в концевые узловые точки ответвлений сети, находящихся на геодезических отметках z, и заданный свободный напор . Вычислив расчетные расходы на участках магистралей, далее определяются диаметры трубопроводов, гидравлические потери и уклоны каждого участка.

Расчетный расход участка складывается из суммы расходов, которые будут в его конце и на других участках, находящихся за ним.

Рассмотрим, например, участки 3-4 и 6-7 (см. рис. 5.11). На участке 3-4 имеет место распределенный расход с удельным путевым расходом . За участком 6-7 находится участок 7-8 с путевым удельным расходом .

Расчетный расход на участке сети 3-4, имеющий путевой распределенный расход,

,

где , -узловые расходы; – путевой расход, ; – транзитный расход.

Расчетный расход участка 6-7, где нет распределенного путевого расхода,

. (5.32)

Считаем, что участок 7-8 входит в главную магистраль 1-2-6-7-8.

. (5.33)

Необходимый напор в узле 8 будет равен

, (5.34)

где – гидравлические потери на участке.

Аналогичные расчеты выполняют для всех участков принятой главной магистрали. В конце расчетов определяется потребный напор в начальной точке 1, обеспечивающий подачу воды расходом с учетом потерь напора по длине всей магистрали:

. (5.35)

Определение диаметров трубопроводов ответвлений обусловливается тем, что начальный напор в узловой точке магистрали известен. Для ветвей 2-3-4-5 гидравлические потери

. (5.36)

Полагая, что гидравлические потери равномерно изменяются по всей длине, гидравлический уклон будет одинаков для всех участков.

Средний гидравлический уклон всего участка

. (5.37)

Ориентировочно напор в узловой точке 3

, (5.38)

где .

Удельное сопротивление этого участка

. (5.39)

По значению А, используя, например, табл. 5.3, определяется диаметр трубопровода этого участка. Зная диаметр трубы, вычисляется средняя скорость потока воды V и уточняется удельное сопротивление А с поправкой на неквадратичность сопротивления (см. табл. 5.4):. Аналогично рассматриваются участки3-4 и 4-5 и находятся диаметры участков труб.

Кольцевая водопроводная сеть

Кольцевые водопроводные сети представляют собой систему смежных замкнутых колец (контуров). По надежности и бесперебойности эксплуатации кольцевые сети имеют весьма существенное преимущество перед разветвленными. В случае аварии (разрыв трубопровода) на одном из участков разветвленной сети подача воды в узловые точки, находящиеся за участком, не будет обеспечена. Для кольцевой сети подача воды не прекращается, так как поврежденный участок сети отключается, а в узловые точки вода подается по другим прилегающим к ним участкам. В случае изменения водопотребления в узловых точках в течение суток возможно осуществить переток воды из другого кольца. В кольцевой сети при возникновении гидравлического удара повышение давления в трубопроводе будет значительно меньше, чем в разветвленной сети. Однако протяженность кольцевой сети существенно больше разветвленной и, следовательно, больше и ее стоимость. Кольцевая сеть обеспечивает гарантированное водопотребление в узлах сети, что очень важно для осуществления пожаротушения.

Схема кольцевой водопроводной сети представлена на рис. 5.12.

Рис. 5.12. Схема кольцевой сети

В кольцевых сетях в отличие от разветвленных неизвестными величинами являются диаметры участков, расходы на участках и их направления.

На каждом участке неизвестны диаметр и расход. Количество неизвестных соответствует числу участков кольцевой сети. Для определения диаметров и расходов в каждом участке сети необходимо составить соответствующее количество уравнений и решить эту систему уравнений. Гидравлический расчет в этом случае достаточно сложен.

Последовательность гидравлического расчета кольцевой водопроводной сети следующая.

1. Определяются путевые расходы на участках кольцевой сети. Путевые расходы приводятся к узловым расходам. Путевые расходы на участках сети:

; ;и т.д.

Предварительно намечается оптимальное направление потоков воды при неизвестных диаметрах труб по отдельным участкам сети исходя из условия, что подача воды производится в наиболее удаленные точки по наикратчайшему пути передвижения потока.

Суммарный расход воды, приходящий в узловую точку, должен быть равен сумме расходов участков, присоединенных к точке, плюс узловой расход, .

Например, для точки 3 будем иметь

.

Диаметры трубопроводов на участках определяются по расчетным путевым расходам исходя из условия наивыгоднейших экономических диаметров с использованием соответствующих таблиц.

Сумма гидравлических потерь в каждом замкнутом кольце при достаточно правильном выборе диаметров труб участков должна быть равна нулю. Принимая условие, что потери напора на участках, в которых вода движется по часовой стрелке, равны потерям напора при движении ее против часовой стрелки, .

Например, для кольца В (см. рис. 5.12)

.

Следует отметить, что при соблюдении этого условия сумма потерь в любом кольце будет равна нулю, а гидравлические потери на участках – минимальны.

Если предварительное определение путевых расходов и диаметров трубопровода участков сети не позволяет получить условие , то производится увязка сети. Увязка заключается в возможном перераспределении направления движения расчетных потоков воды, направляя несколько большие расходы на участки, где гидравлические потери меньше, или наоборот. В результате перераспределения расходов сумма гидравлических потерь должна быть близкой к нулю.

Гидравлический расчет кольцевой сети при наличии большого количества колец представляет собой весьма сложную задачу. Сложность заключается в решении систем квадратных уравнений. В связи с этим используются способы, основанные на методе последовательных приближений. Приближенный метод расчета позволяет упростить увязку кольцевых сетей. Применяются два метода увязки сетей – метод В. Лобачева и метод М. Андрияшева.

Задачи гидравлического расчета водопроводных сетей

Конечной целью расчета водопроводной сети является определение диаметров линий сети и потерь напора в них. В том случае, если известны диаметры, характеристики насосных станций, регулирующих емкостей и др., то в результате расчета определяются истинные расходы в линиях сети, действительные подачи воды всеми водопитателями и создаваемые ими напоры, а также давления во всех узлах сети и нефиксированные отборы.

Для подлежащей расчету водопроводной сети всегда должны задаваться ее конфигурация, длины участков и узловые отборы воды, В основе гидравлического расчета водопроводных сетей лежат положения о том, что распределение воды по линиям сети происходит в соответствии с законами Кирхгофа. Так, в соответствии с I законом Кирхгофа в каждом узле должен соблюдаться материальный баланс, отвечающий принципу сплошности потока. По условиям работы водопроводной сети это означает, что алгебраическая сумма расходов в любом узле сети равна нулю:

По II закону Кирхгофа требуется выполнение условия суммарного нулевого изменения перепадов давления (разности потенциалов) в любом контуре системы. Для кольцевой сети это означает, что алгебраическая сумма потерь напора в любом контуре i-й сети равна нулю:

(∑Sikqik β )I = 0, где qik — расход по участкам водопроводной сети, м 3 /с; Qi — узловые отборы, м 3 /с; Sik — гидравлическое сопротивление линии.

Если имеются напорно-расходные характеристики водопитателей F(Q)М и нефиксированных отборов F(Q)К, расположенных в узлах системы М и К, то в дополнение к последнему уравнению используются уравнения вида

Взаимодействие между водопитателями и нефиксированными отборами осуществляется через потери напора (∑Sikqik β )MK в линиях сети, их соединяющих. Распределение потоков в кольцевой сети, при котором соблюдаются указанные законы, соответствует минимуму энергии, расходуемой на преодоление потерь напора в трубах.

Прежде чем установить число уравнений I и II законов Кирхгофа, характеризующих потокораспределение в системе, рассмотрим свойства водопроводной сети. Рассматривая геометрические свойства кольцевой сети, можно установить определенную связь между числом ее элементов, т.е. числом колец, узлов и участков. Обозначив число колец через n, число узлов — через m, число участков — через р и число водопитателей и нефиксированных отборов — через е, можно установить следующую зависимость:

Это положение является следствием теоремы Эйлера о соотношении между числом граней, вершин и ребер выпуклого многогранника. Оно позволяет установить зависимость между числом уровней I и II законов Кирхгофа при расчете водопроводных сетей и числом неизвестных.

В случае если диаметры линий сети известны, можно однозначно определить расходы в линиях сети. Искомые расходы qik находятся из совместного решения системы p = m+n+e-1 уравнений I и II законов Кирхгофа, из которых n + е — нелинейные уравнения и m – 1 — линейные уравнения типа.

Для разветвленных сетей, не имеющих колец, число уравнений определяется соотношением р = m +е – 1. При отсутствии характеристик водопитателей и нефиксированных отборов их число уменьшается до m – 1.

При отыскании потокораспределения соблюдение линейных уравнений достигается на стадии предварительного потокораспределения.

В общем случае, рассматривая уравнения II закона Кирхгофа, становится ясно, что помимо неизвестных qik, подлежащих отысканию, в них входят также неизвестные диаметры линий dik. Это вызвано тем, что значения Sik, входящие в формулу потерь напора, выражаются в функции диаметров. Таким образом, любое изменение диаметров линий сети будет приводить к перераспределению расходов, протекающих по ним. С другой стороны, перераспределение расходов приводит к необходимости назначения новых диаметров. В этой ситуации сталкиваются (как уже указывалось выше) с задачей технико-экономического расчета. В результате этого расчета отысканию подлежат 2р неизвестных: р значений qik и столько же значений dik. Для одновременного нахождения всех 2р неизвестных полученных уравнений недостаточно.

Не обращаясь на данном этапе к методам полного технико-экономического расчета, можно сделать вывод, что гидравлический расчет сетей следует вести, задаваясь диаметрами. Как было отмечено выше, выбор диаметров отдельных участков сети не может быть произведен совершенно произвольно, так как диаметр, в известной степени, есть функция проводимого трубой расхода, поэтому для точного выбора диаметров необходимо назначать предварительное потокораспределение.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: