О термопарах: что это такое, принцип действия, подключение, применение
В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.
Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.
Устройство и принцип действия
Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.
Рис. 1. Схема строения термопары
Красным цветом выделено зону горячего спая, синим – холодный спай.
Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).
Рис. 2. Термопара с керамическими бусами
Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.
Рис. 3. Измерение напряжения на проводах ТП
Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.
В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.
Рис. 4. Решение вопроса точности показаний термопар
На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.
Типы термопар и их характеристики
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
- ТПП13 – платинородий-платиновые (тип R);
- ТПП10 – платинородий-платиновые (тип S);
- ТПР – платинородий-платинродиевые (тип B);
- ТЖК – железо-константановые (тип J);
- ТМКн – медь-константановые (тип T);
- ТНН – нихросил-нисиловые (тип N);
- ТХА – хромель-алюмелевые (тип K);
- ТХКн – хромель-константановые (тип E);
- ТХК – хромель-копелевые (тип L);
- ТМК – медь-копелевые (тип M);
- ТСС – сильх-силиновые (тип I);
- ТВР – вольфрамрениевые (типы A-1 – A-3).
Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.
Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.
Типы спаев
В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.
Рис. 5. Типы спаев
Буквами обозначено:
- И – один спай, изолированный от корпуса;
- Н – один соединённый с корпусом спай;
- ИИ – два изолированных друг от друга и от корпуса спая;
- 2И – сдвоенный спай, изолированный от корпуса;
- ИН – два спая, один из которых заземлён;
- НН – два неизолированных спая, соединённых с корпусом.
Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.
С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.
Многоточечные термопары
Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.
Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.
Таблица сравнения термопар
Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?
Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.
Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.
Тип термопары | K | J | N | R | S | B | T | E |
Материал положительного электрода | Cr—Ni | Fe | Ni—Cr—Si | Pt—Rh (13 % Rh) | Pt—Rh (10 % Rh) | Pt—Rh (30 % Rh) | Cu | Cr—Ni |
Материал отрицательного электрода | Ni—Al | Cu—Ni | Ni—Si—Mg | Pt | Pt | Pt—Rh (6 % Rh | Cu—Ni | Cu—Ni |
Температурный коэффициент | 40…41 | 55.2 | 68 | |||||
Рабочий температурный диапазон, ºC | 0 до +1100 | 0 до +700 | 0 до +1100 | 0 до +1600 | 0 до 1600 | +200 до +1700 | −185 до +300 | 0 до +800 |
Значения предельных температур, ºС | −180; +1300 | −180; +800 | −270; +1300 | – 50; +1600 | −50; +1750 | 0; +1820 | −250; +400 | −40; +900 |
Класс точности 1, в соответствующем диапазоне температур, (°C) | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,0 от 0 °C до 1100 °C | ±1,0 от 0 °C до 1100 °C | ±0,5 от −40 °C до 125 °C | ±1,5 от −40 °C до 375 °C | |
±0,004×T от 375 °C до 1000 °C | ±0,004×T от 375 °C до 750 °C | ±0,004×T от 375 °C до 1000 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 ° | ±0,004×T от 125 °C до 350 °C | ±0,004×T от 375 °C до 800 °C | ||
Класс точности 2 в соответствующем диапазоне температур, (°C) | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±1,5 от 0 °C до 600 °C | ±1,5 от 0 °C до 600 °C | ±0,0025×T от 600 °C до 1700 °C | ±1,0 от −40 °C до 133 °C | ±2,5 от −40 °C до 333 °C |
±0,0075×T от 333 °C до 1200 °C | ±0, T от 333 °C до 750 °C | ±0,0075×T от 333 °C до 1200 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0075×T от 133 °C до 350 °C | ±0,0075×T от 333 °C до 900 °C | ||
Цветовая маркировка выводов по МЭК | Зелёный — белый | Чёрный — белый | Сиреневый — белый | Оранжевый — белый | Оранжевый — белый | Отсутствует | Коричневый — белый | Фиолетовый — белый |
Способы подключения
Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.
Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).
Рис. 6. Компенсационные провода
Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.
Рис. 7. Схема подключения на разрыв
При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.
В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.
И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.
Применение
Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.
Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.
Преимущества
- высокая точность измерений;
- достаточно широкий температурный диапазон;
- высокая надёжность;
- простота в обслуживании;
- дешевизна.
Недостатки
Недостатками изделий являются факторы:
- влияние свободных спаев на показатели приборов;
- ограничение пределов рабочего диапазона нелинейной зависимостью ТЭДС от степени нагревания, порождающей сложности в разработке вторичных преобразователей сигналов;
- при длительной эксплуатации в условиях перепадов температур ухудшаются градуировочные характеристики;
- необходимость в индивидуальной градуировке для получения высокой точности измерений, в пределах погрешности в 0,01 ºC.
Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.
Датчики температуры. Часть третья. Термопары. Эффект Зеебека
Термопара. Краткая история создания, устройство, принцип работы
Внешне термопара устроена очень просто: две тоненькие проволочки просто сварены между собой в виде аккуратного маленького шарика. Некоторые современные цифровые мультиметры китайского производства комплектуются термопарой, которая позволяет измерять температуру не менее, чем до 1000°C, что дает возможность проверить температуру нагрева паяльника или утюга, которым собираются пригладить лазерную распечатку к стеклотекстолиту, а также во многих других случаях.
Конструкция такой термопары очень проста: оба проводка спрятаны в трубку из стекловолокна, и при этом даже не имеют заметной на глаз изоляции. С одной стороны проволочки аккуратно сварены, а с другой имеют вилку для подключения к прибору. Даже при таком примитивном исполнении результаты измерения температуры особых сомнений не вызывают, если, конечно, не требуется точность измерения класса 0,5°C и выше.
В отличии от только что упомянутых китайских термопар, термопары для применения в промышленных установках имеют конструкцию более сложную: собственно измерительный участок термопары помещается в металлический корпус. Внутри корпуса термопара находится в изоляторах, как правило, керамических, рассчитанных на высокую температуру.
Вообще термопара является самым распространенным и самым старым термодатчиком. Ее действие основывается на эффекте Зеебека, который был открыт еще в 1822 году. Для того, чтобы ознакомиться с этим эффектом, мысленно соберем несложную схему, показанную на рисунке 1.
На рисунке показаны два разнородных металлических проводника М1 и М2, концы которых в точках А и В просто сварены между собой, хотя везде и всюду эти точки называются почему-то спаями. Кстати, многие домашние умельцы-кустари для самодельных термопар, предназначенных для работы при не очень высоких температурах, вместо сварки пользуются как раз пайкой.
Вернемся снова к рисунку 1. Если вся эта конструкция будет просто лежать на столе, то эффекта от нее не будет никакого. Если же один из спаев чем-нибудь нагреть, ну хотя бы спичкой, то в замкнутой цепи из проводников М1 и М2 потечет электрический ток. Пусть он будет весьма слабым, но все-таки он будет.
Чтобы в этом убедиться, достаточно в этой электрической цепи разорвать один провод, причем любой, и в получившийся разрыв включить милливольтметр, желательно со средней точкой, как показано на рисунках 2 и 3.
Если теперь один из спаев нагреть, например спай А, то стрелка прибора отклонится в левую сторону. При этом температура спая A будет равняться TA = TB + ΔT. В этой формуле ΔT = TA – TB есть разность температур между спаями A и B.
На рисунке 3 показано, что будет, если нагреть спай B. Стрелка прибора отклонится в другую сторону, причем в обоих случаях, чем больше будет разность температур между спаями, тем на больший угол отклонится стрелка прибора.
Описанный опыт как раз иллюстрирует эффект Зеебека, смысл которого в том, что если спаи проводников A и B имеют разные температуры, то между ними возникает термоэдс, величина которой пропорциональна разности температур спаев. Не следует забывать, что именно разности температур, а не какой-то температуре вообще!
Если же оба спая имеют одинаковую температуру, то никакой термоэдс в цепи не будет. При этом проводники могут находиться при комнатной температуре, нагреты до нескольких сот градусов, или на них будет воздействовать отрицательная температура – все равно никакой термоэдс получено не будет.
Что же меряет термопара?
Предположим, что один из спаев, например A, (обычно его называют горячим) поместили в сосуд с кипящей водой, а другой спай B (холодный) остался при комнатной температуре, например, 25°C. Именно 25°C в учебниках физики считается нормальными условиями.
Температура кипения воды в нормальных условиях 100°C, поэтому выработанная термопарой термоэдс, будет пропорциональна разности температур спаев, которая в этих условиях составит всего 100 -25 = 75°C. Если же температура окружающей среды будет изменяться, то и результаты измерений будут больше походить на цену на дрова, нежели на температуру кипящей воды. Как же получить правильные результаты?
Вывод напрашивается сам собой: нужно холодный спай охладить до 0°C, тем самым задав нижнюю опорную точку шкалы температуры по Цельсию. Проще всего это сделать, поместив холодный спай термопары в сосуд с тающим льдом, ведь именно эта температура принята за 0°C. Тогда в предыдущем примере все будет правильно: разница температур горячего и холодного спаев составит 100 – 0 = 100°C.
Конечно, решение простое и верное, но каждый раз искать где-то сосуд с тающим льдом и длительное время в таком виде его сохранять, просто технически невозможно. Поэтому вместо льда применяются различные схемы компенсации температуры холодного спая.
Как правило, полупроводниковым датчиком измеряется температура в зоне холодного спая, а уже электронная схема добавляет этот результат в общее значение температуры. В настоящее время выпускаются специализированные микросхемы для термопар, имеющие встроенную схему компенсации температуры холодного спая.
В ряде случаев для упрощения схемы в целом можно от компенсации просто отказаться. Простой пример терморегулятор для паяльника: если паяльник постоянно в руках, то, что мешает чуть подкрутить регулятор, убавить или прибавить температуру? Ведь тот, кто умеет паять, видит качество пайки и вовремя принимает решения. Схема такого терморегулятора достаточно проста и показана на рисунке 4.
Рисунок 4. Схема простого терморегулятора ( для увеличения нажмите на рисунок).
Как видно из рисунка схема достаточно проста и не содержит дорогих специализированных деталей. Ее основу составляет отечественная микросхема К157УД2 – сдвоенный малошумящий операционный усилитель. На ОУ DA1.1 собран собственно усилитель сигнала термопары. При использовании термопары TYPE K при нагреве до 200 – 250°C выходное напряжение усилителя достигает порядка 7 – 8В.
На второй половине ОУ собран компаратор, на инвертирующий вход которого подано напряжение с выхода усилителя термопары. На другой – задающее напряжение с движка переменного резистора R8.
Пока напряжение на выходе усилителя термопары меньше задающего напряжения на выходе компаратора удерживается положительное напряжение, поэтому работает схема запуска симистора T1, выполненная по схеме блокинг-генератора на транзисторе VT1. Поэтому симистор T1 открывается и через нагреватель EK проходит электрический ток, отчего возрастает напряжение на выходе усилителя термопары.
Как только это напряжение чуть превысит задающее напряжение, на выходе компаратора появляется напряжение отрицательного уровня. Поэтому транзистор VT1 запирается и блокинг-генератор перестает вырабатывать управляющие импульсы, что приводит к закрытию симистора T1, и охлаждению нагревательного элемента. Когда напряжение на выходе усилителя термопары станет несколько меньше задающего напряжения. весь цикл нагрева повторяется снова.
Для питания такого терморегулятора понадобится маломощный блок питания с двух полярным напряжением +12, -12 В. Трансформатор Тр1 выполнен на ферритовом кольце типоразмера К10*6*4 из феррита НМ2000. Все три обмотки содержат по 50 витков провода ПЭЛШО-0,1.
Несмотря на простоту схемы, работает она достаточно надежно, а собранная из исправных деталей требует лишь настройки температуры, которую можно определить, используя хотя бы китайский мультиметр с термопарой.
Материалы для изготовления термопар
Как уже было сказано, термопара содержит два электрода из разнородных материалов. Всего имеется около десятка термопар различных типов, по международному стандарту обозначаемых буквами латинского алфавита.
Каждый тип имеет свои характеристики, что в основном обусловлено материалами электродов. Например, достаточно распространенная термопара TYPE K изготовлена из пары хромель – алюмель. Ее диапазон измерений – 200 – 1200 °C, коэффициент термоэдс в диапазоне температур 0 – 1200 °C 35 – 32 мкВ/°C, что говорит о некоторой нелинейности характеристики термопары.
При выборе термопары в первую очередь следует руководствоваться тем, чтобы в измеряемом диапазоне температур нелинейность характеристики была бы минимальной. Тогда погрешность измерений будет не столь заметна.
Если термопара находится на значительном удалении от прибора, то подключение должно производиться с помощью специального компенсационного провода. Такой провод выполнен из таких же материалов как сама термопара, только, как правило, заметно большего диаметра.
Для работы при более высоких температурах часто применяются термопары из благородных металлов на основе платины и платиново-родиевых сплавов. Такие термопары несомненно дороже. Материалы для электродов термопар изготавливаются согласно стандартам. Все разнообразие термопар можно найти в соответствующих таблицах в любом хорошем справочнике.
Как сделать термометр своими руками?
Термометр – предмет, который присутствует практически в каждом доме. Он всегда нужен и полезен, ведь глядя на его шкалу, можно узнать, какова настоящая температура воздуха за окном. Основной процент людей покупает эту деталь в специализированных магазинах, но на самом деле хороший термометр вполне возможно соорудить своими руками. В этой статье мы узнаем, как это можно сделать правильно.
Принцип работы
Прежде чем спешить самостоятельно изготавливать хороший термометр, важно разобраться в принципе его работы. Также важно знать схему будущего изделия и разобраться во всех схемах, которые будут присутствовать в нем. В наше время многие люди выбирают электронные устройства, различающиеся и по форме, и по размерам. Рассмотрим принцип действия современных термометров на примере этих устройств.
Параметры производительности материала напрямую зависят от температуры окружающей среды. Отталкиваясь от этого, проектируется сама электронная схема будущего термометра. Обычно в его устройстве имеет место термопара. Это такой электронный прибор, который состоит из 2 металлов, которые были сварены друг с другом. На их поверхности присутствует специальная контактная площадка, подключенная к измерительной схеме. В условиях нагрева или охлаждения контактов образуется термоэлектродвижущая сила. Ее появление и изменения держатся под контролем и регистрируются платой электроники устройства.
В новых усовершенствованных устройствах вместо обычного термочувствительного составного элемента применяется диод кремниевого типа.
Полупроводниковый радиоэлемент отличает зависимость вольтамперной характеристики от воздействия температурных значений. Проще говоря, при условии прямого запуска значение падения напряжения на переходе меняется исходя из уровня нагрева полупроводниковой детали.
Все данные, что были обработаны подобным термометром, в итоге выводятся на дисплей. Таким образом пользователь может узнавать всю нужную ему информацию о температуре. Современные цифровые модели градусников дают возможность фиксировать температурные изменения в диапазоне от -50 до 100 градусов Цельсия.
Необходимые инструменты и материалы
Если вы решили самостоятельно изготовить термометр, то вам стоит подготовить все необходимые для того материалы и инструменты. Изготавливать термометры можно разными способами и из разных материалов – как из дешевых и доступных, так и дорогих. Рассмотрим, что может понадобиться для создания такого полезного предмета:
- линейка;
- маркер с тонким стержнем;
- обычный покупной термометр (будет нужен для калибровки самодельного изделия);
- пластиковая бутылка (если термометр делается из нее);
- тонкая стеклянная или пластиковая трубка;
- скотч;
- специальная плата (если планируется изготовление более сложного электронного термометра);
- светлый картон или полукартон (из него тоже можно изготовить термометр);
- толстые белые или красные нитки;
- игла с крупным ушком;
- карандаш.
Конкретный список необходимых составляющих будет напрямую зависеть от того, какой именно термометр вы хотите изготовить.
Все необходимые составляющие желательно заготовить заранее перед началом всех работ, чтобы в нужный момент не пришлось искать необходимое приспособление (особенно если оно маленькое) по всему дому, теряя время.
Особенности изготовления
Сделать термометр своими руками можно разными способами. Возможно сделать самое простое устройство, для которого не требуются специальные запчасти и детали, а есть такие самодельные варианты, сделать которые будет довольно трудно. Рассмотрим, как надо правильно сооружать термометры своими руками на примере нескольких популярных моделей.
Из вольтметра
Термометр подобного вида можно изготовить самостоятельно. Но сперва необходимо соорудить приставку к мультиметру для измерения температурных значений, используя 2 основные детали:
Попутно вольтметр надо переделать в термометр. LM 35 представляет собой интегральный датчик температуры, рассчитанный на широкий диапазон температурных значений.
Его отличает высокая точность и калиброванный выход по напряжению. Указанный датчик призван измерять температуру от -55 до +110 градусов Цельсия (при этом имеет место коэффициент 10 мВ/С). Здесь потребляемый ток составляет меньше 60 мкА. Подобная деталь также используется в автомобильных бортовых компьютерах «Мультитроникс». Здесь они также применяются с целью измерения температурных показателей.
Следует тщательно распаять схему на макете и там же хорошо зафиксировать источник питания (для этого вполне подойдет батарейка не менее 3 вольт). Далее можно произвести подключение к тестеру. Надо при помощи подстроечника настроить температуру, опираясь на показания другого термометра и на этом устройство будет готово!
Из пластиковой бутылки
Если хочется изготовить своими руками более простой вариант термометра, то можно обойтись и использованием пластиковой бутылки. Разберем пошагово, как в домашних условиях соорудить такую любопытную вещицу.
- В пластиковую бутылку надо влить воду и медицинский спирт. Соотношение компонентов должно быть 1: 1.
- В полученный состав понадобится капнуть пару капелек пищевого красителя. Удобнее всего вносить этот компонент, используя пипетку.
- Красящий компонент будет нужен для того, чтобы можно было следить за температурными изменениями.
- Далее в бутыль надо вставить пластиковую трубочку (подойдет и стеклянная). Ее необходимо вставлять с максимальной осторожностью, чтобы не вылилась вода.
- Теперь понадобится аккуратно приподнять верхнюю половинку трубки над горлышком, чтоб она выдавалась примерно на 10 см. Другой конец трубочки должен соприкасаться с дном резервуара.
- Правильно поставьте трубочку и зафиксируйте ее, используя специальную формовочную глину (подойдет пластилин).
- Позаботьтесь о плотной закупорке, чтобы из емкости жидкость не вытекла ни при каких обстоятельствах.
- Сбоку к трубке прикрепите полосочку, заготовленную из белой толстой бумаги. Ее понадобится зафиксировать с тыльной стороны, используя скотч.
- Бумага пригодится для того, чтобы можно было держать под контролем уровень жидкой смеси в бутылке. В дальнейшем на указанную деталь можно будет наносить метки.
- Раствор для измерения понадобится долить в трубку, также используя пипетку.
- Добейтесь того, чтобы жидкий состав в трубке поднимался на примерную высоту в 5 см над горлом бутылки.
- Теперь в трубочку понадобится внести каплю растительного масла.
Собрав такой термометр, его работу надо проверить. По очереди опускайте бутылку с трубочкой в резервуары с горячей и холодной водой.
Когда прибор окажется в холодной жидкости, уровень раствора в трубке должен спуститься вниз, а когда он окажется в горячей воде, уровень повысится.
С выносным датчиком
Это сложный вариант самодельного термометра. Устройства, работающие на специальной термопаре и микроконтроллере, в изготовлении могут оказаться не самыми понятными, поэтому приступать к их самостоятельному изготовлению лучше людям, которые будут точно знать, что делают и с чем работают.
Для сооружения такого прибора будут нужны:
- термический датчик (подойдет Dallas SD1820);
- 2 диода Шоттки;
- стабилитроны на 3,9 V, 6,2 V и 5,6V;
- 1 диод 1N4148;
- 1 конденсатор 10мкФ на 16V;
- 1 резистор 1,5 кОм 0,25 Вт;
- корпус для разъема;
- 9-контактный разъем СОМ-порта типа «мама».
При определенном опыте и умениях можно смонтировать все элементы прямо на разъеме – это очень удобно.
В результате получится интересная модель термометра, которая будет работать в диапазоне температур от -55 до +125 градусов Цельсия. Погрешности здесь будут небольшими.
Готовому устройству потребуется правильная калибровка сенсоров. После этого нужно лишь подключить датчик к порту компьютера. Далее понадобится соответствующая программа измерения температуры. Для этого подойдет Temp. Keeper.
Из картона
Как ни странно, термометр можно изготовить из самых простых и доступных материалов, например, из картона. Подобный способ изготовления устройства максимально прост и доступен каждому. Разумеется, такие «устройства» чаще всего делаются для детей или детьми. Рассмотрим пошагово, как можно изготовить такой игрушечный или шуточный термометр своими руками.
- На листе плотного картона понадобится нарисовать форму, повторяющую настоящий медицинский градусник (его можно использовать, чтобы срисовать контуры, если важна точность зарисовки).
- Далее понадобится обязательно нанести шкалу со всеми соответствующими показателями.
- В нижний участок нанесенных градусов надо вставить нитку красного цвета, а в верхний участок понадобится вставить белую нить. Надо скрепить эти детали и аккуратно отрезать все лишнее.
Самодельные картонные градусники благотворно влияют на умственное развитие ребенка. Желательно изготавливать подобную поделку в компании с малышом, привлекая его к процессу.
Как собрать термометр из вольтметра и термопары, смотрите далее.
Щупы для мультиметра
Электронные тестеры-мультиметры применяются, как на производстве, так и в быту. Приборы отличаются удобством работы и надежностью. Но иногда показания тестеров начинают «плавать», прибор «сбоит» в работе. Часто неисправность мультиметра кроется в плохих щупах, в которых нарушаются контакты, трескается изоляция провода. Бюджетные варианты мультиметров имеют простейшие электрические щупы. Ремонт тестера в этом случае прост. Требуется поменять имеющиеся щупы на новые, хорошего качества, с надежными проводами и разъемами.
Универсальные щупы
Чаще всего в комплекте с мультиметром идут универсальные щупы. Ими можно касаться контактных точек электрических схем, плат, приборов. Контакты таких щупов сделаны в виде заточенных игл. Такие щупы имеют самое широкое применение при использовании мультиметра.
Как всякие универсальные устройства, они имеют недостатки:
- Относительно высокие сопротивления проводников;
- Невозможность закрепления на необходимых контактных точках устройств и схем;
- Не всегда возможно подключиться к компонентам микромонтажа;
- Слабая термоустойчивость материала изоляции проводов при случайном касании жала паяльника.
Такие комплекты щупов мультиметров, при всех своих недостатках, недороги, поэтому популярны. Они вполне подходят для проведения простых работ, измерения напряжения, тока, «прозвонки» цепей, в местах, где имеется легкий доступ к электрическим или электронным компонентам и системам.
Фирменные изделия
Высококачественные наборы щупов имеют в комплекте различные насадки, позволяющие произвести более точные измерения в сложных, труднодоступных местах электронных плат, приборов, схем с микромонтажем.
В таких наборах могут быть:
- Переходники – клеммы для стационарного присоединения проводов, например, к блокам питания;
- Тонкие игольчатые насадки для доступа к малоразмерным контактным площадкам печатных плат;
- Зажимы «крокодил», подключаемые к клеммам или контактным штырькам приборов;
- Специальные насадки зажимы для присоединения к элементам поверхностного монтажа – электронным компонентам SMD;
- Пружинные зажимы для установки на ножки микросхем или навесных элементов монтажных плат.
Такие наборы расширяют спектр использования мультиметров, улучшают условия работы измерителя. При этом комплекты имеют серьезный недостаток – высокую цену, которая иногда доходит до нескольких тысяч рублей, что сопоставимо с ценой самого мультиметра.
Щупы для SMD-монтажа
Предназначены для подключения к элементам поверхностного микромонтажа – SMD компонентам, которые не имеют проволочных выводов и крепятся к печатной плате припоем за торцы-контакты. Применяются в виде специальных насадок – зажимов, одеваемых на стандартные щупы.
Такие приспособления надежно прикрепляются к торцевым контактам SMD компонентов.
При необходимости с помощью таких насадок на щупы можно точно измерить напряжение на SMD элементе. Если это резистор, то, зная его номинал, легко рассчитать ток в цепи.
Наконечники-«крокодилы»
Для удобного подключения к выводам электронных устройств, к контактным штырям плат и приборов применяются самозажимные устройства, насадки-«крокодилы».
Существует много вариантов исполнения «крокодилов». Они могут отличаться размерами, быть «голыми» либо изолированными. Крокодилы для мультиметра производятся как из стали, так и из латуни, могут быть «позолоченными» – с покрытием из нитрида титана.
Как изготовить самодельные щупы
В ряде случаев нет возможности приобрести дорогие фирменные приспособления, а надо сделать удобные, надежные и долговечные щупы для мультиметра своими руками.
Стандартные самодельные щупы
Для изготовления самодельных щупов применяют пластиковые корпуса авторучек или цанговых карандашей. В качестве контактных штырей используют толстые швейные иглы. Кабель для провода щупов следует брать многожильный медный, с силиконовой изоляцией либо с изоляцией из EPDM каучука. Такие провода обладают большой гибкостью, не подлежат растрескиванию, не ломаются. Кроме того, имеют хорошую механическую стойкость к возможным прожогам при случайном касании горячего жала. Для подключения проводов к мультиметру используются разъемы «банан».
Заднюю часть иглы облуживают и припаивают к ней провод. Чтобы припой лег надежно, следует применить паяльный флюс на базе соляной или ортофосфорной кислоты. Сборку помещают в корпус будущего щупа. Наконечник закрепляют термоклеем или эпоксидной смолой либо полиуретановым клеем. На выступающий из ручки провод одевают термоусадочную трубку-кембрик и осторожно прогревают ее. Второй конец провода закрепляют пайкой или винтовым зажимом в разъеме «банан». Здесь для прочности провода также необходимо применить термоусадочную трубку. В результате получатся удобные и надежные изделия.
Сопротивление проводов должно быть в районе 0,05-0,08 Ома. Щупы изготовлены под конкретного пользователя. Такие провода для электронного тестера – мультиметра будут надежно служить пользователю долгое время.
Тонкие самодельные щупы для прокалывания изоляции
Бывает, что необходимо измерить напряжение в проводах, при этом снять с них изоляцию не представляется возможным. На помощь приходят щупы, способные без лишних повреждений проколоть изоляцию и обеспечить надежный контакт с жилой провода.
Изготавливаются такие щупы аналогично стандартным, но иглы для контактных штырей берутся более тонкими, короткими и острыми. Такие щупы позволят легко подключиться к изолированным проводам.
Термопара для мультиметра
При наличии в «арсенале» приспособления к мультиметру – термопары становится возможным точно измерять температуру промышленных или бытовых объектов и устройств.
Такое приспособление продается в специализированных магазинах, однако термопара своими руками изготавливается достаточно несложно, иногда бывает проще сделать ее самому. Нужны опыт, соответствующие материалы и некоторое несложное оборудование.
Внимание! При проведении работ необходимо позаботиться о пожарной безопасности, защите рук, лица и глаз.
Основная операция – сварить концы двух отрезков проволоки из разных сплавов. Сварку лучше всего произвести электрической дугой. Потребуется силовой сетевой трансформатор с выходным напряжением 6-12 Вольт и током вторичной обмотки 5-8 ампер. Один провод обмотки подключается к тискам, где закрепляются отрезки проволоки, второй – к графитовому стержню-контакту. В качестве графита можно применить щетку от электродвигателя, электрод от гальванического элемента (батарейки) либо толстый грифель от карандаша.
Следует сделать скрутку проводов на одном из концов будущей термопары. Включить трансформатор в сеть и коснуться графитовым контактом скрутки проводов. Может быть не с первого раза, но после нескольких попыток на конце проволок появится шарик сплава.
Замечание. Вместо трансформатора можно применить автомобильный аккумулятор.
Затем провода термопары следует изолировать друг от друга керамическими трубками или тонким «чулком» из стеклоткани. Свободные концы термопары с помощью зажимов «крокодил» подключить к мультиметру. Имеются специальные адаптеры для подключения термопар к мультиметрам.
Следует провести градуировку термопары:
- Вариант 1. Провести измерения температуры эталонной термопарой и определить соответствие температуры для термоЭДС изготовленной термопары.
- Вариант 2 (менее точная градуировка). Если эталонной термопары нет, замерить сделанным термодатчиком температуру тающего льда – 0 0С и кипящей воды – 100 0С. Делая допущение, что характеристика термопары линейна, построить график-экстраполяцию за пределы значений 0-100 0С.
Пары сплавов для изготовления термопары
Одна из лучших пар – сплавы хромель и алюмель. Здесь хорошая линейность зависимости температуры от термоЭДС, пределы измерения температур от – 200 до 1300 0С.
Чуть хуже результаты у пары хромель – копель.
Лучший результат у пары платина – платинородий, максимальная измеряемая температура – до 1600 0С, высокая точность и стабильность, но эта пара – драгметаллы.
В домашних условиях можно сварить термопару из нихрома – стали и самую простую из меди – стали. Максимум измеряемой температуры – 350-400 0С, нелинейная рабочая зависимость, зато очень доступные материалы.
Зачастую отремонтировать «забарахливший» мультиметр возможно заменой или изготовлением собственными руками комплекта щупов, именно той комплектации, которая потребуется в работе. Такой набор приспособлений для электронного тестера будет оптимальным для конкретного измерителя.
Видео
Как проверить термопару при помощи мультиметра
В частных домах и квартирах, где проведен газ, помимо кухонных печей часто встречаются и газовые котлы для обеспечения горячего водоснабжения и отопления. Большая часть отопительной и бытовой газовой техники имеет в своей конструкции термопару, которая защищает устройство от перегрева, что в свою очередь обеспечивает безопасность эксплуатации подобной техники.
Что такое термопара?
В конструкцию термопары входят два разнородных проводника, которые непосредственно контактируют между собой в одной или нескольких точках (в редких случаях соединяются компенсационными проводами). Когда на участке датчика происходит изменение температуры, внутри устройства создается напряжение.
За счет этого осуществляется контроль температуры и защита от перегрева. Также термопары могут применяться для конвертации тепловой энергии в другие виды энергии, в том числе и в электрический ток.
Главные характеристики термоэлектрического преобразователя напрямую зависят от материала, из которого они производятся. Любой термодатчик сделанный из двух разных металлов будет вырабатывать электрический потенциал под воздействием температуры, но для каждой комбинации металлов температура срабатывания будет разной. За счет этого термопары различаются по уровню контроля температуры.
Видов терморегуляторов большое множество, но важным будет их устойчивость к коррозии. В тех моделях термоэлектрических преобразователях, где температурный датчик находится на достаточном удалении от измерительного прибора, в конструкции для их соединения применяют расширительную проводку, благодаря чему снижается стоимость устройства.
Большинство термопар при производстве стандартизируют по эталону температуры, который составляет 0 градусов Цельсия. Большинство производителей применяют технологии электронной компенсации холодной спайки, за счет чего производится корректировка перепадов температуры на клеммах устройства.
Также за счет специальной электротехники можно сводить к минимуму отклонение других характеристик, что делает термопары более точными, а измерения максимально приближенными к действительности.
Термоэлектрические преобразователи получили большое распространение как в бытовой, так и в промышленной нагревательной технике. Эти простые, но полезные устройства можно найти в конструкции газовой колонки, кухонной печи, промышленной печи, газовой турбины выхлопных газов, дизельного двигателя и т. д.
Проверка термопары
Иногда случается, что газовый котел перестает стабильно работать и причин этому может быть много, но зачастую, самой распространенной является неисправность термопары. Первым признаком неисправности газового котла чаще всего становится проблема с кнопкой на магнитной коробке, а точнее она не фиксируется во время работы котла.
В большинстве случаев хозяева газовых котлов в подобной ситуации попросту фиксируют кнопку в нажатом положении при помощи скотча или изоляционной ленты. Но, во-первых это решает проблему только временно, а во-вторых такой метод может привести к непредсказуемым последствиям, например, к полному выходу из строя газового котла или к несчастному случаю.
Если такая проблема с кнопкой начала проявляться, следует сразу принимать меры к ее устранению. В первую очередь необходима проверка терморегулятора. Есть простой метод, как проверить термопару мультиметром:
- Для начала необходимо отключить газовый котел от электросети и газопровода для обеспечения безопасности во время выполнения ремонтных работ.
- На одном конце термопары находится термодатчик, а вторым концом при помощи гайки термопара крепиться к электромагнитному клапану.
- Гайка откручивается от клапана, и термопара снимается с газового котла.
- Далее необходимо нагреть датчик термоэлектрического преобразователя над источником стабильного огня (например, газовая конфорка кухонной плиты или свеча). Датчик необходимо держать на высоте примерно 1 см от пламени.
Внимание! При нагреве датчика, корпус термоэлектрического преобразователя может нагреться до середины. При нагреве термопары стоит использовать перчатки для защиты рук от ожогов.
Также в случаях, когда напряжение термоэлектрического преобразователя не превышает 18 мВ, он может быть все же исправным. Необходимо подвигать терморегулятор в пламени и провести замер щупами для мультиметра еще раз.
Оптимальное значение электрического напряжения для стабильной работы электромагнитного клапана является 20-25 мВ. Но даже при 18 мВ клапан может продолжать работать без выбивания. Кнопка будет постоянно выключаться при значении напряжения меньше 16-17 мВ.
Самый распространенный тип поломки термопары это прогорание термодатчика.
Если при визуальном осмотре на поверхности датчика видна глубокая черная вмятина или дырка (прогар), то термоэлектрический преобразователь необходимо заменить. Прогорание термоэлектрических преобразователей случается в газовых котлах любого производителя, что является нормально практикой в их эксплуатации.
Также для повышения напряжения в термопаре, а, следовательно, и повышения чувствительности электромагнитного клапана, отверстие запальника специально дополнительно увеличивали. Это приводит к повышению напряжения до значения 30 мВ, но срок эксплуатации терморегуляторов в таких условиях снижается.
Термопара типа K с бананами для подключения
Подобные термопары чаще продаются с другим типом разъёма, предназначенным для специальных измерителей температуры с таким разъёмом, либо для каких-то ещё целей. Поэтому найти такой вариант по хорошей цене сложнее. Мне подобный датчик понадобился для доукомплектации моего старенького мультиметра Mastech M-838, в котором есть функция измерения температуры. Старый датчик я потерял.
Термопара пришла в простой упаковке, на обратной стороне перечислены основные параметры и отличия различных вариантов исполнения. Этот вариант — TP-01A. Длина провода около 1 метра, бананы хорошо подходят под типовые разъёмы мультиметров.
Не был уверен, что в моём мультиметре должна использоваться термопара типа K, модель очень старая, реализация тоже (больше 10 лет), и доступная в инете информация могла быть неточной. Но она самая распространённая из дешёвых, в том числе и в качестве датчиков для мультиметров.
Термопара отлично подошла. Проверил на кипящей воде — показания скачут от 99 до 101 градусов. Можно считать, что термопара подходит для этого мультиметра. Если бы термопара не подошла к моему мультиметру, она всё равно пригодилась бы в моих поделках, данные снимать с неё несложно.
В отличие от пассивных термо-элементов, например термо-резисторов, меняющих свои характеристики в зависимости от температуры, термопара сама создаёт ЭДС на своих контактах, и её достаточно просто преобразовать в конечные данные за счёт того, что зависимость этой ЭДС от температуры близка к линейной. В данном случае изменение температуры на 1°C приводит к изменению ЭДС на 41 мкВ, причём при 0°C ЭДС также равна 0. Например, при 100°C ЭДС на выводах термопары будет 100°C * 41 мкВ/°C = 0,0041 В.
Единственное неудобство, замеченное мной на практике, это то, что ЭДС довольно мала, а значит при её считывании могут возникнуть проблемы с шумами и наводками. Например, в моём паяльнике с функцией поддержания температуры, в котором применяется подобная термопара, шумы появляются в схеме, задающей опорное напряжение (порядка 10 мВ) для сравнения с показаниями термопары, что приводит к проблемам с формированием чёткого сигнала включения и выключения нагрузки.
В таком исполнении термопара предназначена для измерения только воздуха, практически никакой защиты ни самой термопары, ни выводов не предусмотрено. Есть вариант такого датчика для измерения температуры жидкостей и более горячего воздуха, в нём термопара помещена в герметичную гильзу со специальным наполнителем.
Термопара в таком простейшем варианте не предназначена для измерения температуры поверхностей, так как сложно обеспечить надежный тепловой контакт с измеряемой поверхностью и полный прогрев рабочей части термопары, которая является, по сути, спаем двух металлов в виде небольшого шарика. Также, полагаю, есть ограничение на использование со многими жидкостями из-за проблем с окислением и проводимостью, здесь лучше выбрать другой вариант исполнения — TP-02, TP-03, TP-04 и т.п.
Предельная температура для этого типа термопары — 1100 °C длительно и до 1300°C кратковременно, но из-за особенностей исполнения реальный предел намного ниже — всего 400°C, дальше, например, будет оплавляться изоляция. Возможно, есть и другие побочные эффекты. Я кратковременно разогревал эту термопару газовой горелкой примерно до 1000°C без каких-либо последствий, хотя в процессе термопара раскалилась. Нижний предел у датчика — -50°C.
Найти в магазинах можно по фразе «thermocouple banana», мне обошлась в 1 доллар на AliExpress. К сожалению, не нашёл более привлекательной цены даже для мелкого опта, так что повсеместное применение в собственных поделках может оказаться экономически неоправданным, терморезисторы, например, на порядок-два дешевле, и могут решать схожие задачи в большинстве бытовых задач.