DC–DC преобразователь LM2596

LM2596 — понижающий DC-DC преобразователь напряжения

LM2596 — это импульсный понижающий регулируемый стабилизатор постоянного напряжения. Имеет высокий КПД. Меньше нагревается если сравнивать с модулями на линейных стабилизаторах. Источник питания может применяться в широком спектре устройств. К безусловным достоинствам относится работа в ощутимом диапазоне входного напряжения. Вместе с большим КПД это дает хорошие результаты при последовательном включении DC-DC LM2596 с химическими источниками тока, солнечными панелями или ветряными генераторами.

Дополнив преобразователь DC-DC LM2596 трансформатором, выпрямителем и фильтром получим блок питания. На входе стабилизатора напряжение должно быть большее выходного минимум на 1.5 В. При потреблении мощности от DC-DC LM2596 более десяти Вт следует применять средства охлаждения.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Технические характеристики преобразователя LM2596

  • Эффективность преобразования (КПД): до 92%
  • Частота переключения: 150 кГц
  • Рабочая температура: от -40 до + 85 °C
  • Влияние изменения входного напряжения на уровень выхода: ± 0.5%
  • Поддержание установленного напряжения с точностью: ± 2.5%
  • Входное напряжение: 3-40 В
  • Выходное напряжение: 1.5-35 В (регулируемое)
  • Выходной ток: номинальный до 1А, от 1 до 2А заметно возрастает нагрев, предельный 3A (требуется дополнительный радиатор)
  • Размер: 45x20x14 мм

Принципиальная схема преобразователя LM2596

В некоторых модулях защитный диод D1 включен обратно-параллельно на входе, но в таком случае не нужно забывать подсоединить и предохранитель на входе, который сгорит, если перепутать полярность, также этот диод защищает от всплесков напряжения на выходе.

Существуют варианты с прямым включением диода D1 (SS34, SS54) на входе, обычно это диоды Шоттки, у этих диодов есть два положительных качества: весьма малое прямое падение напряжения (0.2-0.4 вольта) на переходе и очень высокое быстродействие.
Но дешёвые модули на базе LM2596 не имеют защитного диода, с одной стороны — это минус, так как случайно можно убить преобразователь перепутав полярность на входе, а с другой стороны — это плюс, потому что на диоде будет падать некоторое напряжение и греться при больших токах.

Схема подключения LM2596 DC-DC преобразователя

Подключается преобразователь очень просто, не стабилизированное напряжение подается на контакты модуля +IN, –IN (плюс и минус соответственно), а выходное напряжение снимается с контактов платы +OUT, -OUT.

С обратной стороны есть стрелка, что указывает в какую сторону идёт преобразование.

DC-DC понижающий преобразователь LM2596S

Сегодня речь пойдет о понижающем преобразователе постоянного напряжения LM2596S, заказанном мною на Aliexpress. Свежей эту покупку никак не назовешь, но руки до написания обзора у меня дошли только сейчас. В момент совершения заказа, мною было куплено 4 таких преобразователя. Два из них до сих пор лежали на полки в ожидании своего часа (планировал использовать их для продления жизни диодных ДХО в автомобиле, заказанных мною не так давно), но жара, выпавшая на отпуск, сменил эти планы.

Поскольку в +35 сидеть в душной квартире в городе занятие не из самых приятных, то я решил провести свой отпуск на природе за городом. А поскольку всяких электронных гаджетов с быстро садящимися аккумуляторов сейчас полно у всех, то вопрос их зарядки все так же актуален. Конечно, можно воспользоваться портативным зарядным устройство, но что делать, если и оно разрядится? И вот тут мне на помощь придет солнечная панель, заказанная пару лет назад и до сих пор просто пылящаяся без какого-либо применения. Почему? — спросите вы. Все просто, из-за отсутствия хоть какого-нибудь регулятора, напряжение с панели выдается в самых разных пределах: от 2 до 7 вольт. А что можно зарядить зарядкой в 6-7В? Уж точно не смартфон. Мой выдавал примерно такую надпись при попытке его зарядки от солнечной панели:

А если панель помещать в тень, то зарядка уже не идет из-за слишком низкого напряжения. Поэтому, единственным рабочим вариантом мне виделось установка преобразователя напряжения. И LM2596S подходит для этой чуть ли не идеально.
Итак, как я уже говорил, заказывал я сразу 4 преобразователя. На то, чтобы из Китая добраться в Беларусь, у посылки ушло около месяца. Если кому-нибудь интересно, то узнать маршрут движения посылки можно тут.

Каждая плата находилась в отдельном антистатическом пакетике, который был запечатан. В живую преобразователь выглядит следующим образом:

В основе схемы лежит довольно широко распространённый импульсный регулируемый стабилизатор LM2596S-ADJ с рабочей частотой 150kHz. Максимальный выходной ток у этого преобразователя 3A (но тут уже без дополнительного радиатора не обойтись), коэффициент полезного действия находится в пределах 73-93%, что на сегодня далеко не самый лучший показатель. Однако для моих целей этого более чем достаточно.

К качеству изготовления преобразователя у меня особых претензий нет: местами с платы не смыт флюс, местами качество пайки немного хромает, но ничего из ряда вон.

Плата с односторонним расположением элементов. На оборотной стороне только наименование, модель и направление подключения.

Параметры у регулятора следующие (заявлено продавцом):

— Режим исправление: не синхронный выпрямитель;
— Входное напряжение: 3 В-40 В;
— Выходное напряжение: 1.3 В-35 В;
— Выходной ток: Номинальный ток 2A, максимальная 3A (дополнительный радиатор требуется);
— Эффективность преобразования: 92% (максимально);
— Частота: 65 кГц;
— Пульсация выхода: 30mV (максимум);
— Регулировка нагрузки: ± 5 процента;
— Регулировка напряжения: ± 2.5 процента;
— Рабочая температура:-минус 40 градусов-85 градусов;
— Размеры: 43 мм * 21 мм * 14 мм (Д * Ш * Г).

С учетом довольно компактных размеров платы (что с одной стороны плюс), все элементы расположены на ней рядом друг с другом, что существенно снижает рассеивание тепла (что с другой стороны существенный минус).

Регулировка выходного напряжения осуществляется при помощи многооборотного подстроечного резистора, благодаря чему можно без особых проблем задать нужное значение.

Клеммников на плате нет, так что все провода придется паять. Правда, сложного в этом ничего нет, так как места пайки подписаны. Перепутать что-либо просто невозможно. Зато есть отверстия для крепежных винтов на тот случай, если плату понадобится где-нибудь закрепить.

На входе и выходе стоят конденсаторы. На входе — емкостью 100 uF, максимальное напряжение 50В. На выходе — полимерный, что способствует снижению пульсации выходного напряжения.

Как я уже говорил, максимальный ток — 3А. Если превысить данное значение, то сработает защита, которая сводится к кратковременному разрыванию цепи. Но использовать данный регулятор на максимальном значении я бы никому не советовал, так как температура нагрева будет существенной (около 90-100 градусов).

В принципе, на этом с теорией покончено и можно переходить к усовершенствованию солнечной панели. Для этого надо разрезать идущий от нее провод, впаять в разрыв наш преобразователь и вуаля — все готово.

Положив панель на солнце, видим, что напряжение — 6,53В.

К сожалению, на солнце данные с ЖК экранчика тестера становятся еле различимыми, потому на фото их плохо видно. Так что буду их дублировать текстом.

Читайте также:  Топчан своими руками: основные виды конструкций, полная пошаговая инструкция изготовления топчана для дачи и гостиной

Если сейчас к панели подключить кабель, а к нему телефон, то можно будет увидеть то, что показано на первом фото, размещенном в начале обзора.

Впаяв в цепь наш преобразователь, видим, как на нем начинает светиться синий диод, что свидетельствует о том, что на него подается напряжение.

Подключив USB тестер, при помощи построечного резистора выставляем напряжение на выходе в 5,29В.

Подключаем к нему кабель, а к кабелю телефон. Видим, что начинается зарядка :) То есть наконец таки наша солнечная панель перестала быть бесполезной и начала помогать нам экономить электроэнергию :)

Во время зарядки напряжение упало до 4,92В. Зарядка осуществляется током в 0,22А. Не самый лучший показатель, но не критично. К тому же не стоит забывать, что заряжаемся мы от энергии солнца, а не от домашней сети.

Вот так выглядит зарядное устройство в сборе.

Так что вывод тут один — преобразователь работает и справляется с поставленными перед ним задачами. А в описанных выше условиях он даже не начал греться.

Да, на то, чтобы зарядить аккумулятор от солнечной панели придется потратить куда больше времени, нежели при зарядке от обычной розетки, но не следует забывать, что, во-первых, розетки не всегда под рукой, а, во-вторых, солнечная энергия пока что абсолютно бесплатная :)

На этом, пожалуй, все. Спасибо за внимание и потраченное время.

Понижающий DC-DC преобразователь на LM2596

Понижающие DC-DC преобразователи все чаще и чаще находят свое применение в быту, хозяйстве, автомобильной технике, а также в качестве регулируемых блоков питания в домашней лаборатории.

К примеру, на большегрузном автомобиле напряжение бортовой кабельной сети может составлять +24В, а вам необходимо подключить автомагнитолу или другое устройство с входным напряжение +12В, тогда такой понижающий преобразователь вам очень пригодится.

Множество людей заказывают с различных китайских сайтов понижающие DC-DC преобразователи, но их мощность довольно таки ограничена, ввиду экономии китайцами на сечении обмоточного провода, полупроводниковых приборах и сердечниках дросселей, ведь чем мощнее преобразователь, тем он дороже. Поэтому, предлагаю вам собрать понижающий DC-DC самостоятельно, который превзойдет по мощности китайские аналоги, а также будет экономически выгоднее. По моему фотоотчету и представленной схеме видно, что сборка не займет много времени.

Микросхема LM2596 есть ни что иное, как импульсный понижающий регулятор напряжения. Она выпускается как на фиксированное напряжение (3.3В, 5В, 12В) так и на регулируемое напряжение (ADJ). На базе регулируемой микросхемы и будет построен наш понижающий DC-DC преобразователь.

Рекомендую к прочтению статью “Регулируемый стабилизатор напряжения на LM2576”, микросхемы LM2576 и LM2596 практически идентичны, расположение выводов и обвязка одинаковые, разница в частоте генератора и некоторых параметров.

Схема преобразователя

Основные параметры регулятора LM2596

Входное напряжение………. до +40В

Максимальное входное напряжение ………. +45В

Выходное напряжение………. от 1.23В до 37В ±4%

Частота генератора………. 150кГц

Выходной ток………. до 3А

Ток потребления в режиме Standby………. 80мкА

Рабочая температура от -45°С до +150°С

Тип корпуса TO-220 (5 выводов) или TO-263 (5 выводов)

КПД (при Vin= 12В, Vout= 3В Iout= 3А). 73%

Хотя КПД может и достигать 94%, он зависит от входного и выходного напряжения, а также от качества намотки и правильности подбора индуктивности дросселя.

Согласно графика, взятого из даташита, при входном напряжении +30В, выходном +20В и токе нагрузки 3А, КПД должен составить 94%.

Также у микросхемы LM2596 есть защита по току и от перегрева. Замечу, что на неоригинальных микросхемах данные функции могут работать некорректно, либо вовсе отсутствуют. Короткое замыкание на выходе преобразователя приводит к выходу из строя микросхемы (проверил на двух LM-ках), хотя тут удивляться и нечему, производитель не пишет в даташите о присутствии защиты от КЗ.

Элементы схемы

Все номиналы элементов указаны на схеме электрической принципиальной. Напряжение конденсаторов С1 и С2 выбирается в зависимости от входного и выходного напряжения (напряжение входа (выхода) + запас 25%), я установил конденсаторы с запасом, на напряжение 50В.

Конденсатор C3 – керамический. Номинал его выбирается согласно таблицы из даташита. Согласно этой таблицы емкость C3 подбирается для каждого отдельного выходного напряжения, но так как преобразователь в моем случае регулируемый, то я применил конденсатор средней емкости 1нФ.

Диод VD1 должен быть диодом Шоттки, или другим сверхбыстрым диодом (FR, UF, SF и др.). Он должен быть рассчитан на ток 5А и напряжение не меньше 40В. Я установил импульсный диод FR601 (6А 50В).

Дроссель L1 должен быть рассчитан на ток 5А и иметь индуктивность 68мкГн. Для этого берем сердечник из порошкового железа (желто-белого цвета), наружный диаметр 27мм, внутренний 14мм, ширина 11мм, ваши размеры могут отличаться, но чем больше они будут, тем лучше. Далее мотаем двумя жилами (диаметр каждой жилы 1мм) 28 витков. Я мотал одиночной жилой диаметром 1,4мм, но при большой выходной мощности (40Вт) дроссель грелся сильно, в том числе и из-за недостаточного сечения жилы. Если мотать двумя жилами, то в один слой обмотку положить не удастся, поэтому нужно мотать в два слоя, без изоляции между слоями (если эмаль на проводе не повреждена).

Через резистор R1 протекает малый ток, поэтому его мощность 0,25Вт.

Резистор R2 подстроечный, но может быть заменен на постоянный, для этого его сопротивление рассчитывается на каждое выходное напряжение по формуле:

Где R1 = 1кОм (по даташиту), Vref = 1,23В. Тогда, посчитаем сопротивление резистора R2 для выходного напряжения Vout = 30В.

R2 = 1кОм * (30В/1,23В – 1) = 23,39кОм (приведя к стандартному номиналу, получим сопротивление R2 = 22кОм).

Таким образом, можно рассчитать сопротивление резистора R2 для любого выходного напряжения (в рамках возможного диапазона).

Также, зная сопротивление резистора R2, можно рассчитать выходное напряжение.

Испытания понижающего DC-DC преобразователя на LM2596

При испытаниях на микросхему был установлен радиатор площадью ≈ 90 см² .

Испытания я проводил на нагрузке сопротивлением 6,8 Ом (постоянный резистор, опущенный в воду). Изначально на вход преобразователя я подал напряжение +27В, входной ток составил 1,85А (входная мощность 49,95Вт). Выходное напряжение я выставил 15,5В, ток нагрузки составил 2,5А (выходная мощность 38,75Вт). КПД при этом составил 78%, это очень даже неплохо.

После 20 мин. работы понижающего преобразователя диод VD1 нагрелся до температуры 50°С, дроссель L1 нагрелся до температуры 70°С, сама микросхема нагрелась до 80°С. То есть, во всех элементах есть резерв по температуре, кроме дросселя, 70 градусов для него многовато.

Поэтому для эксплуатации данного преобразователя на выходной мощности 30-40Вт и более, необходимо мотать дроссель двумя (тремя) жилами и выбирать больший по размерам сердечник. Диод и микросхема могут долговременно держать температуру 100-120°С без каких-либо опасений (кроме нагрева всего что рядом находится, в том числе и корпуса). При желании можно установить на микросхему больший по размеру радиатор, а у диода VD1 можно оставить длинные выводы, тогда будет тепло отводиться лучше, либо прикрепить (припаять к одному из выводов) небольшую пластинку (радиатор). Также нужно как можно лучше залудить дорожки печатной платы, либо пропаять по ним медную жилу, это обеспечит меньший нагрев дорожек при долгой работе на большую выходную мощность.

Читайте также:  Как из одной комнаты сделать две: делается два помещения

Испытания продолжаются…

Подав на вход преобразователя напряжение +12В, входной ток составил 1,75А (потребляемая мощность 21Вт). Выходное напряжение я выставил 5,3 Вольт, выходной ток составил 2,5А (выходная мощность 13,25Вт), КПД при этом составил уже 63%.

После 20 мин. работы преобразователя дроссель L1 нагрелся до температуры 45°С, микросхема LM2596 нагрелась до температуры 70°С, температуру диода VD1 я не стал измерять, так как он был чуть горячим.

Пару слов о печатной плате…

В даташите представлен эскиз исполнения LM2596 в корпусе TO-220 с загнутыми выводами.

Я же покупал микросхему с прямыми выводами и сам их подгибал.

Так вот, перегнул я их не как в даташите, а наоборот. Соответственно печатную плату развел под неправильный изгиб выводов, но эта печатная плата оказалась удобнее. Даташитовский вариант мне не нравится вовсе, так как невозможно LM-ку установить на стенку корпуса блока питания или другого устройства. Поэтому я развел плату и под стандартный изгиб выводов, с возможностью установки большого радиатора или крепления к стенке корпуса. Поэтому, для вас в архиве лежат две рабочие печатные платы. Перемычки устанавливать как можно толще (диаметром не менее 1мм).

Печатная плата понижающего DC-DC преобразователя на LM2596 СКАЧАТЬ

Универсальный понижающий преобразователь напряжения на LM2596

Универсальный понижающий преобразователь напряжения.

Характеристики от продавца:

  • Питание: 5-35 В (постоянный ток)
  • Выход: 1,25-30 В, 3 А (макс. 4 А). Для >15 Вт требуется теплоотвод
  • Постоянное напряжение (CV)
  • Постоянный ток (CC)
  • Индикация заряда
  • Предполагаемые способы использования:
    • Преобразователь для питания LED-ламп, лент и т.п.
    • Зарядка аккумуляторов постоянным током и напряжением с минимальной индикацией

Плата очень маленькая, влазит в спичечный коробок.

Моё применение — простейший маломощный лабораторный источник питания. Ещё одну такую плату поставил в зарядное устройство для литиевой батареи шуруповёрта.

Постоянное напряжение

Устройство здесь выполняет роль стабилизатора напряжения. На вход подаём постоянное напряжение от 5 В до 35 В. На выходе получаем заранее заданное постоянное напряжение от 1,25 В до 30 В. Выходное напряжение не может быть больше входного минус некоторая разница (не менее 2 В). Таким образом, после настройки выходного напряжения Uвых входное Uвх можно менять в диапазоне примерно от Uвх + 2В до 35 В, выходное напряжение при этом не будет меняться.

Постоянный ток

Пока ток не превышает заданного максимума, плата выполняет роль стабилизатора напряжения, ток может быть любым, напряжение — строго заданное. Как только ток пытается подняться выше заданного, начинает работать ограничитель тока. Ток на выходе при этом фиксированный, а напряжение понижается так, чтобы через нагрузку шёл этот максимальный ток. Получается, что ни напряжение, ни ток не выходят за установленные значения.

Например, если по расчетам выходит, что выходной ток должен быть 2,5 А (например, при заданном Uвых = 5 В и нагрузке 2 Ом), но плата настроена на ограничение в 2 А, то на выходе будет 2 А и напряжение 4 В (2 А * 2 Ом), при этом будет гореть индикатор ограничения. Если теперь повысить сопротивление нагрузки до 3 Ом, то ток в выходной цепи будет идти без ограничений, напряжение снижаться не будет и будет равно заданному, ток — 5 В / 3 Ом = 1,67 А. Индикатор при этом гореть не будет.

Для настройки максимального тока закорачиваем выход через мультиметр в режиме измерения большого тока, обычно с пределом 10 А, которого здесь хватит с запасом, и выставляем крутилкой на плате необходимый ток.

Индикация заряда

Этот индикатор горит, пока ток в выходной цепи выше заданного значения. Это значение устанавливается относительно максимального тока. При установке большого максимального тока (единицы ампер) может не получиться установить индикацию на маленький ток (единицы и десятки мА).

Опыт применения

Попробовал в качестве CC+CV зарядки для лития. Фазы CC и CV работают, но процесс зарядки в конце не останавливается, просто гаснет индикатор заряда. Если конечное напряжение заряда устанавливать заведомо ниже предела для аккумулятора, ничего плохого в такой зарядке нет, в конце ток просто очень медленно упадёт до нуля. Но лучше реализовать на выходе ключ (реле, полевик), который бы отрубал зарядку при падении тока до заданного значения.

Еще один вариант использования — обычное зарядное устройство, за счёт низких пульсаций на выходе, довольно качественное. У меня как раз начал шалить зарядник от планшета — тач при зарядке плохо работал. Эксперимент оказался удачным, пульсации на выходе достаточно низкие, при зарядке планшета от этой платы всё работало нормально. Конечно, придётся также иметь/купить адаптер питания с выходным напряжением примерно от 9 В до 35 В и мощностью выше необходимой для заряжаемого устройства с запасом.

При большом токе и низком напряжении на выходе этот преобразователь сильно греется. Хотя по инструкции радиатор нужно ставить от 15 Вт, проблемы начинаются гораздо раньше, например уже при 5 В / 1 А. Можно поставить радиатор, но он должен быть с выпуклой контактной площадкой, возможно придётся его стачивать. Никаких приспособлений для крепления радиатора на плате нет, придётся клеить на теплопроводящий клей.

С другой стороны, при использовании в зарядном для шуруповёрта я настраивал выход на 16,4 В и 0,5 А, то есть на выходе была даже большая мощность, но плата была чуть тёплая. КПД и, соответственно, нагрев сильно зависят от выходного напряжения (больше — лучше) и относительно слабо от входного, подробности можно увидеть в даташите на LM2596 на графике Efficiency.

Возьмём для примера входное напряжение 25 В и пару выходных — 5 В и 20 В. КПД в первом случае будет около 82%, во втором — около 94%. При одинаковой мощности на выходе (например, 10 Вт) при 5 В будет рассеиваться 1,8 Вт, а при 20 В — всего 0,6 Вт. Если взять одинаковый ток на выходе, например 1 А, то разница будет с другим знаком (0,9 Вт и 1,2 Вт для 5 В и 20 В соответственно), но совсем небольшой. При этом снижение входного напряжения для входного 5 В не даст улучшения КПД (пик эффективности для этого напряжения как раз около 25 В).

Отсюда делаем вывод, что этот преобразователь больше подходит для относительно высоких выходных напряжений (например, 12 В и выше), но при этом он не способен работать с большими токами, т.к. рассеиваемая мощность, а значит и нагрев, при увеличении выходного тока будет всё равно только расти, а охлаждение платы минимально. Реальные характеристики преобразователя наверняка хуже заявленных, но для первичной оценки хватит и этой информации.

Читайте также:  Что такое рубероид и для чего он нужен? Чем отличается толь от рубероида? Пергамин или

Есть множество вариантов исполнения этой платы, этот — самый маломощный. Есть с радиатором, залитые компаундом, с мощными дросселем и другими элементами. Но эти варианты намного дороже, и их использование оправдано только в случае работы в оптимальных, но максимальных, режимах преобразователя, иначе лучше подыскать решение на другой схеме. Нет смысла затыкать проблему КПД охлаждением, когда для необходимого выходного напряжения есть решения с лучшим КПД.

В целом, это интересное устройство. Можно использовать как простейший лабораторный источник питания за 2-3 доллара. Для тестов использовал БП от старого принтера, выдающего 33 В и 400 мА (13,2 Вт). С ним удавалось получить такие значения, как 12 В / 1 А, 5 В / 3 А (перегруз источника, но он справился). Максимальный ток видел 6,5 А на 1,25 В, скорее всего из-за ошибки в схеме (заявленный предел — 4 А), плата при этом сильно грелась. В таких платах может использоваться поддельный LM2596, либо перебитый LM2576, поэтому заявленным характеристикам сильно доверять не стоит.

Найти в магазинах можно по фразе «lm2596 cc cv», отбирать по картинкам с двумя или тремя (как у меня) потенциометрами. Цена — 2-3 доллара за штуку без претензий на оригинальность деталей.

Дополнение от 7 марта 2016 г.

Внёс несколько уточнений, добавил график напряжения/тока на выходе, убрал сомнительную информацию.

Дополнение от 4 апреля 2016 г.

График КПД (Efficiency) из даташита на LM2596:

DC-DC Понижающий преобразователь напряжения на LM2596

Предыстория так сказать

примерно по $2,5 (если перевести с нашей валюты на вечнозеленые)

После вполне демократичных цен в указанных выше обзорах данное предложение вызывало эффект серпом по… кхм так о чем я там? Ах да… плюнув презрительно в сторону обдирально-грабительских цен я поскакал бодро искать что нибудь по адекватной цене и желательно с фри шиппингом в мою сторону.
После быстрого поиска был найден устраивающий меня вариант и сразу же был оплачен.

Собственно на этом заканчивается предисловие и начинается сама история.

Прибыла вся эта красота в стандартном пакетике

Обмотанная вспененным полиэтиленом

Сама платка из себя ничего особого не представляет

Микросхема

По плате претензий нет. Чистенькая и аккуратная. на обратной стороне ровным счетом ничего, так что все стандартно.

Хочу уточнить сразу тут НЕ БУДЕТ схем, даташитов, и прочей технической информации.
Все перечисленное указали уже ув. Kirich и Ksiman и я честно сомневаюсь в своих способностях хоть как то дополнить сказанное и описанное ими.
Вот тут есть более подробно ТЫК и ТЫК

Именно поэтому в начале указанно что это именно обзор-отзыв. :)

Линейные размеры
43мм х 21мм х 13мм (Длина х Ширина х Высота)
(Извините спичечный коробок для наглядного сравнения не нашел.)


Ну и собственно как это будет использоваться.

Остался у меня как то после легкого ремонта ИБП вот такой вот зверек ( Безвозмездна то есть даром )

на 9к махов (9 A/h)

Использовать его вроде как и не куда ибо он уже не первой свежести но и просто так лежащий он травмирует душу, ну и собственно пришла в голову идея использовать его как повербанк.

Да да… вы не ослыш… ммм не обчитались :) Прикрутить к нему старенький стрелочный вольтметр коих есть у меня (остались в наследство от CCCP) и вперед и с песней.

Корпус для стабилизатора пожертвовал нам недо-USB2.0 недо-хаб.

Страна в тему :)

Для проверки запитан от ИПТ.

Ну и вот так это будет выглядеть в готовом виде… ну по крайней мере так задумывалось :) только добавится вольтметр для контроля напряжения на аккумуляторе.

Ну и все на этом наверное.
Надеюсь кому нибудь данный обзор-отзыв окажется полезен.

DC–DC преобразователь LM2596

Я работаю лаборантом в колледже. Столкнулись с проблемой – начали гаснуть мониторы без каких либо причин. Разбором мониторов, тестами и всяким шаманством выяснилось, что это вина ламп подсветки, а точнее их питания (высоковольтные катушки там стоят).

Полазав по форумам, просмотрев кучу материала, мы решили заменить лампы на светодиодные ленты.

За пример я взял монитор SAMSUNG SyncMaster 740N

Разбираем монитор с помощью прямошлицевой отвертки (или с помощью специального инструмента) по шву (там заклёпки)

Переделка блока питания монитора

Светодиодные ленты, которые мы приобрели в Китае, питаются от 12V и нам нужно получить это напряжение. Сделать это легче всего с самого БП монитора через стабилизатор напряжения (В моём случае это будет DC-DC понижающий преобразователь на LM микросхеме).

(Прошу прощения, забыл сфотографировать старые конденсаторы (они вспухли), но на фото видно какие заменены на новые)

Мы можем просто запитать лампы монитора через стабилизатор напряжения 12V, но логичнее сделать так, чтобы лампы сами выключались, когда монитор не активен.

Для этого я использовал транзистор с малым током открытия, такой транзистор был найден на блоке питания монитора.

Слева на право: 1 ножка ключ, 2 ножка земля, 3 ножка выход.

Когда на ножку (1) подаётся напряжение 2В (от пина ON/OFF с блока управление монитора), происходит замыкание 2 и 3 ножек транзистора

Аккуратно выпаиваем 3 ножку, она будет служить нам землёй.

Припаиваем провод к этой ноге и изолируем его.

Теперь нам нужно взять +12V, для этого смотрим на шлейф соединения блока питания и управления

Припаиваем провод ко 2 пину (на котором написано 13V).

На самом деле там от 11 до 17 вольт. Поэтому нам нужно подключить стабилизатор напряжения, в моём случае это DC-DC понижающий преобразователь на LM микросхеме (lm2596 dc-dc)

Закрепляем его оно блока управления монитора (очень удобно приклеить его на 2х сторонний скотч)

Замена ламп монитора на LED ленту

Аккуратно откручиваем и снимаем панельку защиты управляющей части матрицы

Аккуратно, с помощью всё той же прямошлицевой отвёртки разбираем сам экран.

Вынимаем матрицу монитора и откладываем её в сторону, чтобы не повредить при наших манипуляциях.

Достаём лампы. Очень аккуратно с лампами, они ртутные.

Заменяем лампы на светодиодные ленты нужной длинны

Теперь собираем всё обратно

Тестируем всё это соединённое вместе, и выставляем напряжение 11V на стабилизаторе.

Почему 11V? Потому что я не верю китайским LED лентам.

Собираем весь монитор целиком, изолируя контакты и соединения

У меня всё заработало идеально.

На сборку монитора уходит 1.5 – 2 часа.

После сбора 10 таких мониторов стал справляться минут за 40-50.

Стабилизаторы из преобразователей оправдали себя (led лента не мигала).

Транзистор можно заменить на аналог или вообще сделать “секретный” монитор с тумблером.

На этом всё, спасибо за прочтение.

Прошу прощение за грамотность и правильность составление поста (первый пост, не судите строго)

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: