Поплавковые датчики уровня жидкости: разновидности, принцип работы, достоинства и недостатки

Особенности, виды и принцип работы поплавковых уровнемеров

Самыми простыми и доступными уровнемерами для жидких сред считаются поплавковые уровнемеры. Они определяют уровень жидкости положением чувствительного элемента, входящего в состав конструкции.

Устройство поплавковых уровнемеров и принцип работы

Поплавковые уровнемеры сконструированы следующим образом: часть устройства погружена в жидкость, другая половина находится над ее поверхностью:

  • Находящийся в воде элемент называется поплавком – это пустотелый предмет, на который, в соответствие с законом Архимеда, действует выталкивающая сила.
  • Часть поплавкового уровнемера, не находящаяся в воде, является обрабатывающим сигнал устройством. Оно отслеживает вертикальные перемещения поплавка и передает показания движения на ряд различных устройств. Таким образом осуществляется непрерывное измерение уровня или сигнализация по контрольным точкам при достижении заданного объема жидкости в резервуаре.

По конструктивным отличиям можно выделить поплавковые уровнемеры узкого диапазона и поплавковые уровнемеры широкого диапазона.

Первые (рис.1, а), как правило, представляют собой устройства, состоящие из шарообразного поплавка, через штангу и сальниковое уплотнение соединенного с преобразователем угловых перемещений (П) в унифицированный электрический или пневматический сигнал. Поплавок обычно имеет диаметр 80 – 100 мм, выполнен из нержавеющей стали и плавает на поверхности жидкости.

Рис.1. Поплавковые уровнемеры: а) – узкого диапазона, б) – широкого диапазона: 1 – поплавок, 2 – гибкий трос, 3 – шкала, 4 – противовес.

В поплавковых уровнемерах широкого диапазона (рис. 1, б) поплавок через гибкий трос связан с противовесом и отсчетным устройством, указывающим значения уровня жидкости в резервуаре.

При расчетах поплавковых уровнемеров подбирают такие конструктивные параметры поплавка, которые обеспечивают состояние равновесия системы «поплавок – противовес» только при определенной глубине погружения поплавка.

Виды поплавковых уровнемеров:

Поплавковые магнитные уровнемеры. В устройстве поплавок взаимодействует с магнитом. Любое отклонение поплавка от магнита регистрируется как изменение уровня.

РОС-501 датчики-реле уровня поплавковые СУГ-М сигнализаторы уровня жидкости поплавковые ПМП-052 датчики уровня поплавковые магнитные

Поплавковые магнитострикционные уровнемеры. Поплавок с постоянным магнитом внутри перемещается вдоль направляющего стержня, в котором натянута проволока из магнитострикционного материала (волновод). В волновод подаются токовые импульсы. В месте расположения магнита (поплавка) при взаимодействии магнитного поля с током, возникают импульсы продольной деформации, которые регистрируются пьезоэлементом вверху стержня. В данном случае регистрируется время прохождения импульса – оно прямо пропорционально расстоянию до поверхности.

Поплавковые механические уровнемеры. Поплавок управляет механическим переключателем (открывает, либо закрывает контакт) путем непосредственного контакта. Работают по принципу сообщающихся сосудов.

ДРУ-1ПМ датчик-реле уровня жидкости поплавковый РО-1 датчики-реле уровня жидкости РУ-1 датчики-реле уровня жидкости

Преимущества поплавковых уровнемеров

Главные преимущества поплавковых уровнемеров – это их точность, высокая степень повторяемости и простота конструкции. Также поплавковые уровнемеры отличаются низкой ценой и независимостью показателей измерений от химического состояния жидкости. Однако точности поплавкового уровнемера зависит от колебаний в жидкости, поэтому любые вибрации, например, плескания в емкости, могут исказить показания поплавка.

Устройство и принцип работы датчиков уровня

Какие датчики уровня наиболее точны. Какие могут использоваться для в агрессивных средах. Устройство, принцип действия различных датчиков уровня. В чем у каждого из них преимущество и недостатки.
Вы также можете посмотреть другие статьи. Например, «Датчики перемещения (индуктивный, оптический, емкостной и другие типы)» или «Виды анемометров».

Датчики уровня — это устройства, позволяющие отслеживать количество жидкого или сыпучего вещества по уровню его поверхности в некоторой ёмкости. Датчики уровня могут выдавать дискретный (по достижении некоторого уровня) или непрерывный сигнал (абсолютная высота текущего уровня) в зависимости от принципа действия, что сказывается на их технической сложности, а также на цене. Кроме того, датчики уровня могут быть контактными и бесконтактными, что также сказывается на стоимости и на области их применения.

По принципу действия датчики уровня могут быть:

  • Емкостными
  • Поплавковыми
  • Радарного типа
  • Ультразвуковыми
  • Гидростатическими

Ниже кратко рассмотрены основные виды.

Емкостной датчик уровня

В основу работы данного типа датчика положено свойство конденсатора изменять свою ёмкость при изменении состава и распределения материала диэлектрика, разделяющего пластины конденсатора. Это свойство применяется во многих емкостных детекторах например в емкостных датчиках влажности.

Предположим, имеется коаксиальный конденсатор, помещённый в жидкость (Рисунок 1), которая может свободно проникать в пространство между пластинами. Если известна диэлектрическая проницаемость жидкости, то можно составить следующее равенство:

С – Общая ёмкость конденсатора
С0 – Ёмкость участка конденсатора, не содержащего жидкость
Сl – Ёмкость участка конденсатора, содержащего жидкость
ε0 – Диэлектрическая проницаемость газовой среды
εl – Диэлектрическая проницаемость жидкой среды
G0 – Геометрический коэффициент участка конденсатора, не содержащего жидкость
Gl – Геометрический коэффициент участка конденсатора, содержащего жидкость

При изменении уровня жидкости величина суммарной ёмкости конденсатора также изменятся. Если конденсатор включен в электрическую цепь, не составляет труда отследить изменение ёмкости, по которому можно однозначно судить об изменении уровня жидкости.

Рисунок 1. Общая схема емкостного датчика уровня

Емкостные датчики лишены подвижных элементов, поэтому достаточно надёжны и долговечны. К их недостаткам следует отнести значительную температурную зависимость (которая, впрочем, может быть скомпенсирована), а также необходимость погружения в жидкость.

Поплавковый датчик уровня

Датчики данного типа имеют достаточно простое устройство. Существует несколько конфигураций, выдающих на выход как дискретный, так и непрерывный сигнал, последние можно разделить на две категории – механические и магнитострикционные. В магнитострикционных датчиках в качестве одного из элементов также используется поплавок, в остальном же они довольно сильно отличаются от обычных механических поплавковых датчиков.

Дискретные поплавковые датчики уровня

В реализации датчика, выдающего дискретный сигнал, обычно используется набор поплавков, расположенных на различных уровнях резервуара. При достижении жидкостью уровня, на котором располагается поплавок, он выталкивается за счёт силы Архимеда, направленной вверх. Это приводит в движение механическую систему или электромеханическую систему, и выходной сигнал появляется, например, при замыкании электрических контактов герконового реле.

В альтернативной конфигурации присутствует направляющая, содержащая набор реле. Вдоль направляющей вслед за уровнем жидкости перемещается поплавок, содержащий постоянный магнит. Приближение поплавка к реле вызывает его срабатывание (Рисунок 2).

Рисунок 2. Общая схема поплавкового датчика уровня с дискретным выходом

Дискретный выходной сигнал может быть использован для «пошагового» мониторинга уровня жидкости в резервуаре — датчик просто сообщает, достиг ли уровень жидкости конкретной отметки или нет. Также датчик уровня с дискретным выходным сигналом может служить элементом автономного регулятора в случае, например, когда необходимо поддерживать постоянный уровень жидкости в резервуаре – для реализации данной схемы выходной сигнал может непосредственно управлять силовым реле, открывающим/закрывающим входной/выходной клапан резервуара.

Дискретные поплавковые датчики дёшевы, просты и достаточно надёжны, однако требуют погружения в жидкость и имеют подвижную механику.

Магнитострикционные поплавковые датчики

Поплавковые датчики, выдающие непрерывный сигнал, обычно относятся к датчикам магнитострикционного типа и имеют довольно сложное устройство (Рисунок 3). Основным элементом конструкции по-прежнему является поплавок, в данном случае он содержит постоянный магнит. Поплавок может свободно передвигаться вдоль направляющей, внутри которой располагается волновод из магнитострикционного материала. С определённой периодичностью блок электроники датчика генерирует импульс тока, который распространяется вдоль волновода. Когда импульс достигает области, где располагается поплавок, магнитное поле поплавка и магнитное поле импульса взаимодействуют, что приводит к возникновению механических колебаний, которые распространяются обратно по волноводу и фиксируются чувствительным пьезоэлементом. По временной задержке между отправкой импульса тока и получением механического импульса можно судить о расстоянии до поплавка, а значит и об уровне жидкости в резервуаре.

Рисунок 3. Общая схема магнитострикционного датчика уровня

Магнитострикционные датчики очень точны, выдают непрерывный сигнал, а также могут использоваться с гибким волноводом, что расширяет сферу их применения. К их недостаткам можно отнести их стоимость, техническую сложность и необходимость погружения в жидкость.

Читайте также:  Типы зарядных устройств: описание существующих видов и рекомендации по выбору

Радарный датчик уровня

Главным элементом данного датчика является радиолокатор, частота излучения которого изменяется по линейному закону. Предполагается, что жидкость отражает излучение локатора, поэтому если расположить излучатель-приёмник внутри резервуара согласно схеме (Рисунок 4) и фиксировать задержку отражённого сигнала относительно сигнала источника – можно определить уровень жидкости по величине задержки. Для определения задержки используется линейная модуляция частоты источника. Если частота исходного сигнала изменяется по линейному закону (например, непрерывно возрастает), то отражённый сигнал, имеющий временной сдвиг относительно исходного, будет иметь также и меньшую частоту. По величине частотного сдвига можно однозначно судить о величине временной задержки между двумя сигналами, а значит и о расстоянии до поверхности жидкости.

Дальнейшая обработка полученного сигнала осуществляется в цифровом тракте, и на этом этапе возможна, например, нейтрализация шумовых сигналов, возникающих в результате волнений на поверхности жидкости или поглощения радиоизлучения.

Рисунок 4. Общий принцип функционирования датчика уровня радарного типа

Данный метод на сегодняшний день является наиболее технологичным и совершенным, к числу достоинств датчика на его основе следует отнести:

  1. Отсутствие подвижных элементов
  2. Отсутствие контакта с жидкой средой
  3. Универсальность – возможность работать практически с любой средой при различных условиях
  4. Высокая точность
  5. Возможность адаптировать алгоритм обработки данных для конкретных применений

Основным недостатком радарных датчиков является их цена.

Ультразвуковой датчик уровня

В датчиках данного типа используется схема, во многом сходная со схемой датчика радарного типа. В резервуаре устанавливается блок, состоящий из генератора и приёмника ультразвуковых волн (точно также как например в ультразвуковых расходомерах и ультразвуковых дефектоскопах ). Излучение генератора УВ проходит газовую среду, отражается от поверхности жидкости и попадает на приёмник. Определив временную задержку между излучением и приёмом и зная скорость распространения ультразвука в данной газовой среде, можно вычислить расстояние до поверхности жидкости – то есть определить её уровень.

Ультразвуковым датчикам уровня свойственны практически все достоинства датчиков радарного типа, однако УД обычно имеют более низкую точность, хотя и более просты по внутреннему устройству.

Гидростатический датчик уровня

С помощью датчиков данного типа уровень жидкости в резервуаре определяется путём измерения гидростатического давления столба жидкости над чувствительным элементом датчика (детектором давления). Согласно зависимости (2) высота столба определённой жидкости пропорциональна давлению в данной точке:

P – Давление в данной точке
ρ – Плотность жидкости
g – Ускорение свободного падения
h – Высота столба жидкости над чувствительным элементом

Такие датчики компактны, относительно просты, недороги, а также способны выдавать непрерывный сигнал, однако не являются бесконтактными, что затрудняет их применение в агрессивных средах.

Если вам понравилась статья нажмите на одну из кнопок ниже

Датчики уровня

Принцип работы

Механические и магнитные поплавковые уровнемеры

Принцип действия основан на замыкании поплавком контактов, расположенных на различных уровнях направляющего стержня. В магнитных поплавковых уровнемерах используются герконы, а в механических – микровыключатели.

Преимущества

  • просто
  • дёшево.

Недостатки

  • контактный метод, при выборе поплавка необходимо учитывать: химическую совместимость со средой, плавучесть, вязкость, плотность и температуру
  • не подходит для измерения уровня очень вязкой жидкости, шлама
  • а также жидкости, которая прилипает к поплавку и стержню
  • или содержит металлические кусочки, которые могут вызвать ложные срабатывания магнитных выключателей.

Магнитострикционные уровнемеры

Это поплавковые уровнемеры непрерывного действия, в которых используются магнитострикционный эффект. Поплавок с постоянным магнитом внутри перемещается вдоль направляющего стержня, в котором натянута проволока из магнитострикционного материала (волновод). В волновод подаются токовые импульсы. В месте расположения магнита (поплавка) при взаимодействии магнитного поля с током, возникают импульсы продольной деформации, которые регистрируются пьезоэлементом вверху стержня. Время прохождения импульса пропорционально расстоянию до поверхности.

Буйковые уровнемеры

На частично погружённый в жидкость буёк действует выталкивающая сила Архимеда, пропорциональная глубине погружения.

Ультразвуковые уровнемеры (Ultrasonic)

Принцип действия ультразвуковых уровнемеров основан на измерении времени распространения звуковой волны высокой частоты (20-200 кГц) от антенны уровнемера до поверхности жидкости и обратно.

Ультразвуковые уровнемеры подходят для измерения уровня вязких жидкостей и сыпучих материалов.

Недостатки

  • звуковой сигнал не может распространяться в вакууме
  • на показания оказывают влияние: температура, влажность, давление, турбулентность, пена, пар, изменение концентрации жидкости.

Микроволновые радарные уровнемеры (Radar)

Принцип действия радарных уровнемеров основан на измерении времени распространения электромагнитной волны (радиоволны) сверхвысокой частоты (1-30 ГГц) от антенны уровнемера до поверхности жидкости и обратно.

Радары подходят для использования во влажной, туманной и пыльной среде, а также при переменной температуре.

Импульсный метод – измерение времени прохождения импульса до поверхности и обратно – очень сложно реализовать, т.к. это время измеряется в наносекундах.

Более распространён способ непрерывного линейного частотного модулирования радиосигнала – FMCW (Frequency Modulated Continuous-Wave). При этом способе излученный и отражённый сигналы смешиваются, и образуется сигнал, частота которого равна разности частот этих сигналов. Эта разность пропорциональна расстоянию от антенны до поверхности.

Преимущества

  • радиоволны могут распространяться и в вакууме, на них не влияет температура, давление, влажность и пыль.

Недостатки

  • электромагнитные волны поглощаются (не отражаются) диэлектриками (пластмасса, стекло, бумага и т.д.)
  • высокая цена (чем выше частота, тем точнее измерения и тем дороже).

Гидростатическое измерение уровня

Используется зависимость давления столба жидкости от уровня. Давление столба жидкости измеряется с помощью дифференциальных датчиков давления – один датчик измеряет давление на дне резервуара, а другой – давление над поверхностью жидкости.

Емкостные уровнемеры (Capacitance)

В резервуар опускается конденсатор, представляющий собой длинную трубку с металлическим стержнем внутри. Вместе с резервуаром заполняется и трубка – из-за разной диэлектрической проницаемости жидкости и воздуха ёмкость конденсатора изменяется пропорционально уровню.

В качестве опорного электрода (внешних обкладок конденсатора) могут использоваться стенки резервуара.

Кондуктометрические сигнализаторы уровня

Используются для контроля уровня в проводящих жидкостях. В резервуар опускается пара электродов, и как только уровень повышается так, что электроды оказываются погружёнными в жидкость – уменьшается сопротивление между электродами и срабатывает выключатель. Для контроля нескольких уровней используются несколько пар электродов разной длины.

Вибрационные сигнализаторы уровня (Vibrating Switch)

Применяются для сигнализации уровня жидких и сыпучих веществ. Используется эффект камертона – в резонаторе, имеющем форму вилки, пьезоэлектрическим способом возбуждаются механические резонансные колебания, которые затухают и гасятся при погружении резонатора в сыпучее вещество.

Как выбрать

Измеряемая среда

  • Измеряемая среда (жидкость, шлам, ил, сыпучее и т.п.)
  • Диапазон рабочих температур измеряемой среды
  • Давление измеряемой среды
  • Электрическая проводимость
  • Плотность
  • Вязкость
  • Диэлектрическая проницаемость
  • Прилипает к зонду
  • Содержит металлические включения
  • Есть пена на поверхности.

Окружающая среда

  • Температура окружающей среды
  • Влажность
  • Наличие агрессивных сред
  • Взрывоопасная зона.

Технология

  • Хранение
    • жидкости
    • сыпучего вещества
  • Сепарация (определение уровня разделения несмешивающихся жидкостей)
  • Процесс (перемешивание, нагрев)
  • Реактор (химический процесс)
  • Измерение уровня
    • Непрерывное
    • Дискретное (сигнализация уровня), количество уровней
  • Способ измерения уровня
    • Контактный:
      • поплавковый
      • буйковый
      • емкостной
      • гидростатический
    • Бесконтактный:
      • радарный
      • ультразвуковой
      • радиоактивный
  • Конструкция резервуара
    • Наличие оборудования в ёмкости (циркуляционный насос, мешалка, нагреватель и т.п.)
    • Размеры
    • Материал
    • Верх (открытый, форма крышки)
    • Форма дна
    • Расположение входных и выходных труб
    • Место установки датчика, присоединение (фланцевое, врезное).

    Измерение

    • Диапазон измерения уровня
    • Погрешность измерения.

    Преобразователь

    • Питание
    • Индикатор
    • Место установки
    • Кабельный ввод
    • Выходной сигнал:
      • Токовый 4..20 мА
      • Релейный выход
      • Полевая шина:
        • HART
        • PROFIBUS PA
        • Foundation Fieldbus.

    Поплавковый уровнемер: подробно простым языком

    Поплавковый уровнемер — это прибор для измерения уровня жидкости, сконструированный так, что он плавает наполовину погруженным в жидкость, другая же половина находится над поверхностью жидкости.

    Поплавки — это пустотелые предметы, которые всегда входят в непосредственный контакт с измеряемой жидкостью. Можно использовать вертикальные перемещения поплавка в качестве непосредственного измерения эквивалентного изменения. Перемещения поплавка могут передаваться на ряд различных устройств, с помощью которых осуществляется или непрерывное измерение уровня или же определение уровня с уставками.

    Поплавковый уровнемер

    Принцип работы поплавкового уровнемера

    Плавучесть — это направленная вверх сила или подъемная сила, выталкивающая вверх погруженный в жидкость предмет. На любой предмет, погруженный в жидкость действует подъемная сила, равная по величине весу вытесненной жидкости.

    Демонстрационный показ вытеснения, подъемной силы и кажущейся потери веса

    На рисунке выше проиллюстрированы взаимоотношения между вытеснением, подъемной силой и весом, а также показано, как у предмета, погруженного в жидкость происходит кажущаяся потеря веса, соответствующая по величине весу вытесненной им жидкости.

    На рисунке изображены: предмет цилиндрической формы, подвешенный на весах; большой сосуд, заполненный жидкостью до уровня переточной трубы; пустой сосуд размером поменьше для сбора вылившейся из большого сосуда жидкости, при условии вытеснения жидкости из большого сосуда. Вес предмета показан на шкале весов.

    При погружении предмета в жидкость часть жидкости выливается в пустой сосуд. Изменение показания веса на весах указывает на то, что вес предмета уменьшается. Величина этой кажущейся потери веса равна весу жидкости, вытесненной в пустой сосуд.

    Если вес предмета больше веса вытесненной им жидкости, предмет будет находится в погруженном состоянии, но потеря его веса будет по-прежнему равняться весу вытесненной им жидкости. Если предмет (при полном погружении) весит меньше, чем объем вытесненной им жидкости, предмет поднимется на поверхность и будет держаться на поверхности жидкости. Дрейфующий предмет будет плавать именно на том уровне, на котором вес вытесненной им жидкости будет точно равняться весу самого предмета.

    Плавучесть на примере двух предметов

    На рисунке выше проиллюстрировано явление плавучести на примере двух подвешенных предметов, спускающихся в резервуар с жидкостью. Предмет, находящийся слева, плавает: подъемная (выталкивающая) сила жидкости по величине больше веса предмета. Действие предмета, находящегося справа, подобно действию вытеснителя. По мере повышения уровня жидкости он будет погружаться в жидкость, поскольку выталкивающая сила жидкости по величине меньше веса предмета.

    Сигналы перемещения поплавкового уровнемера в результате его подъема или снижения в соответствии с изменением уровня жидкости могут переводится в показания уровня с помощью ряда различных устройств, включая откалиброванные стержни; рычажные соединения; ленты (или цепи); шкивы и противовесы; канаты и скользящие стрелки-указатели; подъемные механизмы и механические выключатели.

    Стержень со стрелкой-указателем и шкалой монтируются на внешней стороне резервуара. Поплавковый уровнемер, который закрепляется внизу стержня, виден в этом примере через отверстие, закрываемое крышкой, наверху резервуара. Любое изменение положения поплавка показывается смещением стрелки вдоль шкалы.

    А также поплавок может быть подсоединен непосредственно к индикаторной стрелке с помощью рычажного соединения. Это механическое соединение выведено с выходом прямо на стрелку на индикаторном устройстве. При поднимании или опускании поплавка внутри резервуара рычажная передача смещает стрелку вдоль шкалы на индикаторе.

    ДАТЧИК УРОВНЯ ВОДЫ И ДРУГИХ ЖИДКОСТЕЙ

    Отслеживание уровня воды и аналогичных жидкостей осуществляется с помощью приборов с разным типом и функционалом. Выбор конкретного варианта делают исходя из поставленных задач, внешних условий и свойств рабочей жидкости.

    Во избежание ошибок и лишних трат подбор и монтаж датчиков производственного и общественного назначения доверяют специалистам. Датчики для индивидуального пользования без проблем выбираются и устанавливаются самостоятельно.

    Данная группа для измерения уровня воды или других жидкостей представлена приборами с абсолютно разным принципом работы.

    Эти устройства могут быть механическими, электронными, магнитными, оптическими, гидростатическими или локационными.

    Они устанавливаются в местах с затруднительным или отсутствующим доступом к воде или при наличии угрозы безопасности при прямом измерении.

    Простейшие датчики уровня работали за счет базовых законов физики (силы выталкивания или разницы в электропроводности разнородных сред). Современные разновидности пригодны для решения самых разных задач, включая:

    • онлайн мониторинг фактического уровня воды;
    • оповещение о достижении предельных или заданных значений уровня жидкости;
    • измерение и расчет объема рабочей жидкости в емкостях со сложной формой или скорости ее расхода;
    • хранение, накопление и обработку результатов.

    Исходя из функционального назначения все датчики уровня воды делятся на уровнемеры и сигнализаторы. Первые устанавливаются с целью непрерывного мониторинга этого параметра и преобразовывают его значение в аналоговый или цифровой сигнал.

    Вторые задействуются при необходимости получения сигнала или команды о достижении определенного значения уровня жидкости в емкости.

    ВИДЫ ДАТЧИКОВ УРОВНЯ ИХ ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

    В зависимости от способа контакта с жидкой средой все датчики этого типа разделяются на:

    • контактные;
    • бесконтактные.

    Вторая группа более ограничена и представлена высокотехнологичными радарными микроволновыми уровнемерами и ультразвуковыми датчиками обоих типов.

    Микроволновые радарные уровнемеры в свою очередь разделяются на приборы с разным принципом действия (контроль импульсов или FMCV локация), рабочим диапазоном и частотой излучения. Эти уровнемеры признаны самыми совершенными, единственным ограничением их применения считается высокая цена.

    Принцип действия ультразвуковых уровнемеров и сигнализаторов основан на анализе времени распространения импульсов от сенсора-излучателя до жидкой среды. К преимуществам приборов этой группы относят экономичность, компактность и неприхотливость, в целом их характеристики считаются универсальными.

    Сфера применения ультразвуковых разновидностей ограничена водой и другими жидкостями, для измерения уровня сыпучих веществ они не подходят. К учитываемым особенностям этих устройств также относят потребность в компенсации некоторых внешних влияний (ветра, наличия пенного слоя).

    Контактные датчики более распространены и многообразны. В зависимости от принципа действия эта группа условно разделяется на:

    • емкостные и кондуктометрические разновидности, имеющие схожий принцип работы и определяющие уровень по изменению емкости среды и показателей сопротивления соответственно;
    • поплавковые измерители в свою очередь разделяемые на простые механические и усовершенствованные герконовые;
    • гидростатические уровнемеры и сигнализаторы, используемые при отслеживании уровня воды и жидкостей с постоянной плотностью при давлении внешней среды не выше атмосферного;
    • оптические электронные сигнализаторы предельного уровня, отслеживающие это значение за счет изменения отражательной способности воды;
    • вибрационные устройства, отслеживающие достижение определенного уровня за счет анализа изменений амплитуды колебаний чувствительного элемента.

    Поплавковые механические датчики имеют самый простой принцип работы (контакты замыкаются при выталкивании поплавка рабочей жидкостью). Устройства этой группы ценятся за надежность и доступность, но из-за срабатывания исключительно при достижении определенного предела их возможности ограничены.

    Герконовые (они же магнитно-поплавковые) датчики этих недостатков лишены, контакты их чувствительных элементов могут замыкаться по мере приближения магнита. Все поплавковые разновидности не нуждаются в сложном монтаже и обходятся дешево, но в клейких и динамичных средах они малополезны.

    Емкостные датчики оснащаются специальными электродами, образующими с корпусом примитивный конденсатор. Их используют для мониторинга уровня воды и любых не вспенивающихся и не набрызгивающихся на зонд жидкостей (исключение – емкостные радиочастотные виды).

    Кондуктометрические разновидности датчиков уровня жидкости оснащаются жесткими стержнями или гибкими тросовыми электродами. Функции общего электрода у них выполняют металлические стенки рабочего резервуара или контрольные стержни.

    Замыкание реле происходит при контакте рабочего элемента с пищевой или технической водой, напитками, растворами солей или щелочей и стоками. Их преимущества и недостатки во многом схожи с емкостными, но длину их электродов легче менять. В отличие от емкостных разновидностей кондуктометрических принцип реализуется исключительно в сигнализаторах.

    Гидростатические разновидности имеет широкую сферу применения и ценятся за надежность и неприхотливость. В частности, с их помощью отслеживается уровень воды в скважинах (безальтернативное применение), контролируется давление в насосных и котельных и работа оросительных установок.

    Но из-за риска получения некорректных результатов их не рекомендуют использовать для отслеживания уровня растворов с переменной плотностью.

    Оптические электронные датчики используются в качестве альтернативы герконовым при отслеживании уровня воды в резервуарах, находящихся под вибрацией.

    Они ценятся за компактность и возможность получения независимых от внешних факторов результатов. Из-за дороговизны, ограничений в объеме резервуаров и потребности в профессиональном монтаже они используются реже остальных.

    Вибрационные сигнализаторы срабатывают при изменении вибрации вилочковых чувствительных элементов. Такие приборы имеют средние показатели точности и экономичности и хорошо себя проявляют при работе с пенными и вязкими средами. Вибрационные сигнализаторы не имеют эксплуатационных недостатков, но для постоянного мониторинга или выдачи сверхточных результатов они не предназначены.

    ОБЛАСТЬ ПРИМЕНЕНИЯ И ОСОБЕННОСТИ ВЫБОРА

    Сфера применения распространяется на воду и водные растворы, нефтепродукты и смазочные материалы, пищевые напитки и стоки. При достаточной защищенности корпуса или бесконтактном замере такие датчики отслеживают уровень щелочей, кислот и вязких сред, включая агрессивные. Один и тот же тип датчика при этом может использоваться для разных целей.

    В частности, при работе с водой и любыми невязкими жидкостями отличные результаты обеспечивают ультразвуковые, поплавковые, вибрационные, оптические, емкостные и гидростатические сигнализаторы и уровнемеры. При работе с растворами кислот предпочтение отдается емкостным, вибрационным и герконовым датчикам. Для контроля пенных или липких сред лучше всего подходят емкостные радиочастотные приборы. При высокой вязкости рабочей среды помимо них стоит использовать вибрационные или ультразвуковые бесконтактные разновидности.

    При подборе конкретного прибора последовательно учитывается:

    • состав и физико-химические параметры рабочей жидкости;
    • объем, форма и материал стенок резервуаров (некоторые датчики требуют врезки в стенки, что не всегда допустимо);
    • потребность в постоянном мониторинге или допустимость использования сигналов о достижении предельных значений;
    • коммутационные и интеграционные возможности приборов, требования к монтажу и обслуживанию.

    При выборе датчиков для бытовых целей предпочтение отдается энергонезависимым, неприхотливым, надежным и долговечным устройствам. Большинство частных задач (отслеживание уровня воды насоса, колодца, бассейна) решает поплавковый кабельный датчик.

    При необходимости постоянного контроля уровня воды в скважине устанавливаются гидростатические уровнемеры или сигнализаторы. Остальные разновидности использовать для этих целей нецелесообразно.

    © 2014-2020 г.г. Все права защищены.
    Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

    Поплавковый уровнемер (сигнализатор уровня)

    Один из возможных вариантов поплавкового уровнемера представляет собой полый стержень из немагнитного материала, внутри которого размещаются магнитоуправляемые контакты (герконы) верхнего и нижнего уровня. Внутреннее пространство стержня герметично и изолировано от жидкости. По стержню свободно перемещается поплавок со встроенным магнитом. Перемещение поплавка вверх обусловлено действием архимедовой силы, при повышении уровня жидкости в резервуаре поплавок всплывает. Перемещение поплавка вниз обусловлено действием сил всемирного тяготения, когда уровень жидкости падает, поплавок опускается вслед за ней. Перемещение поплавка вверх и вниз ограничено стопорными кольцами. Когда поплавок, с встроенным в него магнитом, доходит до верхнего или нижнего геркона контакты последнего замыкаются. Схема автоматики срабатывает, активируя цепи сигнализации и исполнительные механизмы. Длина стержня у подобных уровнемеров может быть от нескольких десятков сантиметров до 1,5 метров.

    Достоинство: простая и не дорогая конструкция.

    Недостатки: Данный уровнемер имеет жестко настроенные пределы срабатывания, которые не могут быть изменены в процессе эксплуатации. Уровнемер такой конструкции должен монтироваться строго вертикально во избежание “залипания” поплавка.

    Поплавковые уровнемеры с регулируемыми порогами выполнены в виде байпаса к резервуару, уровень жидкости в котором контролируется, и работают по принципу сообщающихся сосудов. Уровень жидкости в полом стержне уровнемера такой же, как и в резервуаре. Через нижнее присоединение уровнемера к резервуару в него поступает жидкость, а через верхнее присоединение из уровнемера выходит воздух. Если уровнемер будет присоединен к резервуару только в одной, нижней точке, то уровни жидкости в резервуаре и стержне уровнемера могут не совпадать. Для визуального контроля уровня жидкости в резервуаре полый стержень чаще всего изготавливают из прозрачного материала – например, стеклянной трубки.

    Магнитоуправляемые контакты размещаются внутри пластмассовых хомутов, которые могут перемещаться вдоль стержня уровнемера. Настройка порогов срабатывания уровнемера производиться установкой хомутов на нужном расстоянии.

    В случае если хомуты с герконами установлены не в крайнее верхнее и не в крайнее нижнее положение может возникнуть следующая ситуация. При пропадании напряжения питания со схемы контроля уровня поплавок, в связи с изменением уровня жидкости, может «проскочить» магнитоуправляемый контакт, но схема автоматики при этом не сработает. После включения напряжения питания никаких аварийных сигналов не поступит, притом, что резервуар в это время может быть уже пустым или, наоборот, переполненным.

    Рассмотренные поплавковые уровнемеры имеют ограничения по применению в жидкостях содержащих загрязняющие вещества, так как они могут оседать на поплавке и стержне. Это приведет к заклиниванию поплавка. Для контроля уровня загрязненных жидкостей используют поплавковые уровнемеры других конструктивных исполнений (с штоком, например).

    Емкостные уровнемеры

    Принцип действия емкостных уровнемеров (ЕУ) основан на принципе устройства и работе конденсаторов. Возьмем две металлические пластины, разделенные слоем диэлектрического материала. При подаче электрического тока пластины начнут набирать электрически заряд. Электрическая емкость (количество электрического заряда) будет равна:

    ,

    где С – электрическая емкость; e – диэлектрическая проницаемость материала между пластинами; F – площадь каждого электрода; d – расстояние между электродами.

    Для работы емкостного уровнемера в контролируемом резервуаре создается конденсатор. Один электрод – специально изготовлен. Вторым электродом является металлический корпус резервуара.

    При измерении уровня неэлектропроводных материалов в качестве диэлектрика выступает контролируемый материал. При повышении или понижении уровня происходит изменение величины e – диэлектрической проницаемости материала между пластинами, что приводит к изменению емкости конденсатора, которая контролируется измерительными приборами.

    Условная схема устройства емкостного уровнемера

    а) для неэлектропроводящих материалов; б) для электропроводящих материалов

    1 – пластины конденсатора; 2 – диэлектрик; 3 – контрольно-измерительный прибор

    При измерении уровня электропроводных материалов в качестве второго электрода выступает контролируемый материал. В качестве диэлектрика выступает воздух над контролируемой средой. При изменении уровня контролируемого вещества происходит уменьшение или увеличение расстояния между электродами d. Это приводит изменению емкости конденсатора.

    Достоинства ЕУ: высокая чувствительность, большое быстродействие, малые габариты, возможность использования для контроля агрессивных и сыпучих сред.

    Недостатки: затруднения при использовании во взрывоопасных средах, невозможность применения для контроля налипающих материалов, настройка на конкретный материал, конкретный резервуар.

    Манометрические уровнемеры

    Принцип действия основан на свойстве жидкостей и газов оказывать гидростатическое давление на чувствительный элемент манометрического уровнемера (МУ). Чем выше уровень контролируемого материала, тем большее давление оказывается на чувствительный элемент. Зависимость давления от высоты определяется формулой:

    где Р – давление контролируемого материала; r – плотность жидкости; Н – высота столба жидкости; g – ускорение свободного падения.

    На рисунке представлены условные схемы манометрических способов измерения уровня.

    Манометрические способы измерения уровня:

    а) с отбором контролируемой среды; б) мембранный: 1 – мембрана;

    2 – импульсная трубка; 3 – измерительный прибор

    При измерении уровня с отбором контролируемой среды (рис. а) в качестве измерительного прибора используется манометр, проградуированный в единицах уровня. Для точности показаний необходимо устанавливать прибор на дно резервуара.

    В мембранном уровнемере (рис. б) чувствительным элементом является мембрана, которая передает давление по импульсной трубке 2 на манометр проградуированный в единицах измерения уровня 3. Импульсная трубка заполнена жидкостью или газом. Для передачи данных в САУ вместо манометра устанавливается датчик давления.

    Достоинства МУ: простота конструкции, отсутствие механических систем, возможность работы в агрессивных средах.

    Недостатки: индивидуальная настройка, зависимость показаний от температуры.

    Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: