Защита от КЗ для блока питания своими руками
Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.
На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.
Схема защиты блока питания от короткого замыкания
Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.
Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.
Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.
Печатная плата устройства защиты блока питания от короткого замыкания.
Печатная плата защиты блока питания от короткого замыкания
Посмотрим, как работает готовое устройство защиты блока питания от короткого замыкания. В дежурном состоянии после подачи питания, горит красный светодиод, нагрузка отключена.
Нажимаем кнопку и устройство перейдет в рабочий режим.
Загорелся зеленый светодиод, сигнализируя о подаче питания на нагрузку, в качестве нагрузки я использую обыкновенную 12 вольтовую лампочку.
С помощью отвертки замыкаю между собой центральный контакт с цоколем лампочки, получается короткое замыкание, мгновенно срабатывает защита от КЗ, нагрузка отключается, загорается красный светодиод своим светом сообщая о коротком замыкании.
Радиодетали для сборки
- Реле SRD-12VDC-SL-C, можно использовать аналогичное на другое напряжение
- Резисторы R1, R2 1K сопротивление подбирайте для каждого светодиода
- Светодиоды 5 мм 2 шт. красный и зеленый
- Кнопка любая без фиксации с нормально разомкнутыми контактами
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о том, как сделать защиту от короткого замыкания для блока питания
Токовая защита блока питания схема
Надёжная токовая защита для БП и ЗУ на IR2153 и электронном трансформаторе.
Автор: Blaze, cornage@bk.ru
Опубликовано 09.02.2016
Создано при помощи КотоРед.
На создание данной статьи меня спровоцировал опыт создания блоков питания и зарядных устройств на основе простых импульсных блоков питания, которыми являются как иип на IR2153, так и переделанный различными способами под блок питания электронный трансформатор. Данные источники питания являются простыми, нестабилизированными импульсными блоками питания без каких-либо защит. Не смотря на данные недостатки, такие источники питания довольно просты в изготовлении,не требуют сложной настройки, времени на создание такого блока питания требуется меньше чем на полный ШИМ БП с узлами стабилизации и защиты.
Обьединив такой блок питания и простейший ШИМ- регулятор на NE555, получам регулируемый блок питания как для экспирементов, так и для зарядки АКБ. Радости нашей нет предела до того момента, пока данный девайс не попробовать на искру, или по ошибке, размышляя над созданием очередного аппарата перепутать полярность заряжаемого АКБ. Окрикивая громким хлопком и орошая едким дымом помещение,в котором произошол данный конфуз, изобретение сообщает нам, что простой импульсный блок питания, который собран по упрощённо-ознакомительной схеме не может быть надёжным.
Тут пришла мысль о том, чтобы найти не просто ввести тот или инной узел защиты в конкретный экземпляр блока питания, а найти или создать универсальную быстродействующую схему, которую можно внедрять в любой вторичный источник питания.
Требования к узлу защиты:
-плата защиты должна занимать мало места
-работоспособной при больших токах нагрузки
-высокая скорость срабатывания
Одним из заинтересовавших вариантов была такая схема, найденная в интерете:
При замыкании выхода данной схемы, разряжается ёмкость затвора VT1 через диод VD1, что приводит к закрытию VT1 и ток через транзистор не протекает, блок питания остаётся целым и невредимым. Но что же произойдёт если на выход данной схемы подключить нагрузку, в 300вт, когда наш иип может выдать всего 200вт? Не смотря на то что у нас присутствует схема защиты, замученный блок питания снова взрывается.
Недостатки данной схемы:
1. Необходимо точно подбирать сопротивление шунта, чтобы максимально допустимый ток блока питания создал такое падение напряжения на выбранном шунте, при котором VT2, открываясь полностью закроет VT1.
2. В данной схеме может наступить момент, когда ток проходящий через шунт, приоткроет VT2, вследствии чего VT1 начнёт закрываться и останется в таком состоянии, что будет недозакрыт, а учитывая что через VT1 протекает немалый ток, то данный линейный режим вызовет его сильный перегрев, врезультате которого VT1 будет пробит.
В блоке питания на IR2153 однажды применял триггерную защиту, остался доволен её работой. Прицепим к схеме триггерной защёлки на комплиментарной паре транзисторов шунт в качестве датчика тока и n-канальный транзистор в роли ключевого элемента получаем такую схему:
После подачи питания на схему, транзистор Q3, через светодиод и R4 открывается, стабилитрон D3 ограничивает напряжение на затворе полевого транзистора. D4 защищает Q3 от выбросов высокого напряжения, при подключении индуктивной нагрузки (электродвигатель). На паре транзисторов Q1, Q2 собран аналог тиристора. Ток, протекающий через шунт R1, вызывает падение напряжения, которое с движка переменного резистора R10, и цепочку R2, С2, поступает на базу транзистора Q2. Величину напряжения с шунта, которое пропорционально току, протекающему через этот шунт можно регулировать прерменным резистором R10. В момент, когда напряжение на базе Q2 станет больше 0.5-0.7в транзистор Q2 начнёт открываться, тем самым открывая Q1, в свою очередь транзистор Q1открываясь, будет открывать Q2. Данный процесс происходит очень быстро, за доли секунды транзисторы откроют друг друга и останутся в таком устойчивом состоянии. Через открытый аналог тиристора затвро Q3, а также резистор R4 окажутся подключены к общему проводнику схемы, что приведёт к закрытию Q3 и свечение светодиода D1 сообщит о том что сработала защита. Снять защиту можно как отключив кратковременно питание, так и кратковременным нажатием на кнопку S1.
Универсальная схема защиты была создана и проверена в работе, шунт R1 был составлен из двух резисторов 0.22 Ом 5Вт. Остался последний шаг – вводим в нвшу схему защиту от переполюсовки клемм АКБ.
Схема с защитой от переполюсовки :
Наша схема дополнилась диодом D2, резисторами R6, R5. Кнопка S1 была убрана из схемы по причине того, что при срабатывании защиты она не выводила схему из защиты, после доработки.
Токовая защита осталась без изменений, снять защиту можно отключив питание на 2-3 секунды. При подключении к выходу схемы АКБ, перепутав полярность, напряжение с АКБ через диод D2, резистор R6 поступает на базу Q2, срабатывает защита Q3 закрывается, светодиод D1 сигнализирует о срабатывании защиты.
На этой волне я заканчиваю поиски защиты для своих простых иип. Работой своих схем доволен, надеюсь они пригодятся и вам.
Блок питания 1…20 В с защитой по току
При наладке различных электронных устройств необходим блок питания (БП), в котором имеется регулировка выходного напряжения и возможность регулирования уровня срабатывания защиты от превышения по току в широких пределах. При срабатывании защиты, нагрузка (подключенное устройство) должна автоматически отключаться.
Поиск в интернете дал несколько подходящих схем блоков питания. Остановился на одной из них. Схема проста в изготовлении и наладке, состоит из доступных деталей, выполняет заявленные требования.
Предлагаемый к изготовлению блок питания выполнен на базе операционного усилителя LM358 и имеет следующие характеристики:
Входное напряжение, В – 24. 29
Выходное стабилизированное напряжение, В – 1. 20 (27)
Ток срабатывания защиты, А – 0,03. 2,0
Фото 2. Схема БП
Описание работы БП
Регулируемый стабилизатор напряжения собран на операционном усилителе DA1.1. На вход усилителя (вывод 3) поступает образцовое напряжение с движка переменного резистора R2, за стабильность которого отвечает стабилитрон VD1, а на инвертирующий вход (вывод 2) напряжение поступает с эмиттера транзистора VT1 через делитель напряжения R10R7. С помощью переменного резистора R2, можно изменять выходное напряжение БП.
Блок защиты от перегрузок по току выполнен на операционном усилителе DA1.2, он сравнивает напряжения на входах ОУ. На вход 5 через резистор R14 поступает напряжение с датчика тока нагрузки – резистора R13. На инвертирующий вход (вывод 6) поступает образцовое напряжение, за стабильность которого отвечает диод VD2 с напряжением стабилизации около 0,6 в.
Пока падение напряжения, создаваемое током нагрузки на резисторе R13, меньше образцового, напряжение на выходе (вывод 7) ОУ DA1.2 близко к нулю. В том случае, если ток нагрузки превысит допустимый установленный уровень, увеличится напряжение на датчике тока и напряжение на выходе ОУ DA1.2 возрастет практически до напряжения питания. При этом включится светодиод HL1, сигнализируя о превышении, откроется транзистор VT2, шунтируя стабилитрон VD1 резистором R12. Вследствие чего, транзистор VT1 закроется, выходное напряжение БП уменьшится практически до нуля и нагрузка отключится. Для включения нагрузки нужно нажать на кнопку SА1. Регулировка уровня защиты выполняется с помощью переменного резистора R5.
1. Основу блока питания, его выходные характеристики определяет источник тока – применяемый трансформатор. В моем случае нашел применение тороидальный трансформатор от стиральной машины. Трансформатор имеет две выходные обмотки на 8в и 15в. Соединив обе обмотки последовательно и добавив выпрямительный мост на имеющихся под рукой диодах средней мощности КД202М, получил источник постоянного напряжения 23в, 2а для БП.
Фото 3. Трансформатор и выпрямительный мост.
2. Другой определяющей частью БП является корпус прибора. В данном случае нашел применение детский диапроектор мешающийся в гараже. Удалив лишнее и обработав в передней части отверстия для установки показывающего микроамперметра, получилась заготовка корпуса БП.
Фото 4. Заготовка корпуса БП
3. Монтаж электронной схемы выполнен на универсальной монтажной плате размером 45 х 65 мм. Компоновка деталей на плате зависит от размеров, найденных в хозяйстве компонентов. Вместо резисторов R6 (настройка тока срабатывания) и R10 (ограничение максимального напряжения на выходе) на плате установлены подстроечные резисторы с увеличенным в 1,5 раза номиналом. По окончании настройки БП их можно заменить на постоянные.
Фото 5. Монтажная плата
4. Сборка платы и выносных элементов электронной схемы в полном объеме для испытания, настройки и регулировки выходных параметров.
Фото 6. Узел управления БП
5. Изготовление и подгонка шунта и дополнительного сопротивления для использования микроамперметра в качестве амперметра или вольтметра БП. Дополнительное сопротивление состоит из последовательно соединенных постоянного и подстроечного резисторов (на фото сверху). Шунт (на фото ниже) включается в основную цепь тока и состоит из провода с малым сопротивлением. Сечение провода определяется максимальным выходным током. При измерении силы тока, прибор подключается параллельно шунту.
Фото 7. Микроамперметр, шунт и дополнительное сопротивление
Подгонка длины шунта и величины дополнительного сопротивления производится при соответствующем подключении к прибору с контролем на соответствие по мультиметру. Переключение прибора в режим Амперметр/Вольтметр выполняется тумблером в соответствии со схемой:
Фото 8. Схема переключения режима контроля
6. Разметка и обработка лицевой панели БП, монтаж выносных деталей. В данном варианте на лицевую панель вынесен микроамперметр (тумблер переключения режима контроля A/V справа от прибора), выходные клеммы, регуляторы напряжения и тока, индикаторы режима работы. Для уменьшения потерь и в связи с частым использованием, дополнительно выведен отдельный стабилизированный выход 5 в. Для чего напряжение, от обмотки трансформатора на 8в, подается на второй выпрямительный мост и типовую схему на 7805 имеющую встроенную защиту.
Фото 9. Лицевая панель
7. Сборка БП. Все элементы БП устанавливаются в корпус. В данном варианте, радиатором управляющего транзистора VT1 служит алюминиевая пластина толщиной 5 мм, закрепленная в верхней части крышки корпуса, служащего дополнительным радиатором. Транзистор закреплен на радиаторе через электроизолирующую прокладку.
Фото 10. Сборка БП без крышки
Фото 11. Общий вид БП.
Операционный усилитель LM358N имеет в своем составе два ОУ.
Транзистор VT1 можно заменить на любой из серий КТ827, КТ829. Транзистор VT2 любой из серии КТ315. Стабилитрон VD1 можно использовать любой, с напряжением стабилизации 6,8…8,0в и током 3…8 мА. Диоды VD2-VD4 из серии КД521 или КД522Б. Конденсаторы С3, C4 – пленочные или керамические. Оксидные конденсаторы: C1 – К50-18 или аналогичный импортный, остальные — из серии К50-35. Постоянные резисторы серии МЛТ, переменные — СП3-9а.
Налаживание блока питания – движок переменного резистора R2 перемещают в верхнее по схеме положение и измеряют максимальное выходное напряжение, устанавливают его равным 20 В, подбирая резистор R10. После этого подключают к выходу нагрузку и производят замеры тока срабатывания защиты. Для уменьшения уровня срабатывания защиты, уменьшить сопротивление резистора R6. Для увеличения максимального уровня срабатывания защиты – уменьшить сопротивление резистора R13 — датчика тока нагрузки.
Токовая защита блока питания схема
В качестве устройства электронной защиты источников питания можно использовать предлагаемый электронный предохранитель, включаемый между источниками и нагрузкой. Схема работает следующим образом. Когда ток нагрузки не превышает заранее установленного тока срабатывания, транзистор VT2 открыт, и падение напряжения на нем минимально. При увеличении тока нагрузки свыше заданного, увеличивается падение напряжения на транзисторе VT2, в связи с чем увеличивается напряжение, поступающее через R4 на базу VT1. Транзистор VT1 начинает открываться.
Процесс происходит лавинообразно благодаря наличию положительной обратной связи через резистор R4. В результате VT2 закрывается, и через нагрузку ток не протекает. Одновременно загорается сигнал о перегрузке. Приведенные на схеме номиналы резисторов соответствуют напряжению 9 В и току срабатывания 1 А. При необходимости изменить параметры предохранителя необходимо пересчитать величины сопротивлений R3 и R4.
Защита блока питания от КЗ
Защита блока питания от КЗ.
Для питания собираемых конструкций радиолюбители нередко используют простейшие блоки, состоящие из понижающего трансформатора и выпрямителя с конденсатором фильтра. И, конечно, в таких блоках нет никакой защиты от короткого замыкания (КЗ) в нагрузке, хотя оно подчас приводит к выходу из строя выпрямителя и даже трансформатора. Применять в таких блоках питания в качестве элемента защиты плавкий предохранитель не всегда удобно, да и, кроме того, быстродействие у него невысокое. Один из вариантов решения проблемы защиты от КЗ – включение последовательно с нагрузкой полевого транзистора средней мощности с встроенным каналом. Дело в том, что на вольт-амперной характеристике такого транзистора есть участок, на котором ток стока не зависит от напряжения между стоком и истоком. Поэтому на этом участке транзистор работает как стабилизатор (ограничитель) тока.
Рис.1
Схема подключения транзистора к блоку питания приведена на рис.1, а вольт-амперные характеристики транзистора для различных сопротивлений резистора R1 – на рис.2. Работает защита так. Если сопротивление резистора равно нулю (т. е. исток соединен с затвором), а нагрузка потребляет ток около 0,25 А, то падение напряжения на полевом транзисторе не превышает 1,5 В, и практически на нагрузке будет все выпрямленное напряжение. При появлении же в цепи нагрузки КЗ ток через выпрямитель резко возрастает и при отсутствии транзистора может достичь нескольких ампер. Транзистор ограничивает ток короткого замыкания на уровне 0,45. 0,5 А независимо от падения напряжения на нем. В этом случае выходное напряжение станет равным нулю, а все напряжение упадет на полевом транзисторе. Таким образом, в случае КЗ мощность, потребляемая от источника питания, увеличится в данном примере не более чем вдвое, что в большинстве случаев вполне допустимо и не отразится на “здоровье” деталей блока питания.
ЗАЩИТНОЕ УСТРОЙСТВО
О. СИДОРОВИЧ, г. Львов, Украина
Отличительная особенность предлагаемого устройства — малое падение напряжения в номинальном режиме. Кроме того, после устранения аварийной ситуации оно автоматически восстанавливает свою работоспособность.
Устройство предназначено для защиты от замыкания в нагрузке и перегрузки по току. Его включают между источником питания и нагрузкой. Преимущество предлагаемого устройства по сравнению с описанным, например, в [1] – малое падение напряжения в номинальном режиме, а также автоматический возврат в рабочее состояние после устранения причины аварии. Последнее особенно важно при кратковременных перегрузках.
Основные технические параметры
Напряжение питания, В . 12
Номинальный ток, А. 1
Ток срабатывания защиты, А. 1,2
Падение напряжения при номинальном токе, не более, В. 0,6
Устройство содержит транзисторный коммутатор, узлы защиты и запуска. Основной элемент – коммутатор, выполненный на транзисторе VT5 (рис. 1).
УСТРОЙСТВО ЗАЩИТЫ ИСТОЧНИКА ПИТАНИЯ ОТ ПЕРЕГРУЗОК
УСТРОЙСТВО ЗАЩИТЫ ИСТОЧНИКА ПИТАНИЯ ОТ ПЕРЕГРУЗОК
Л. МОРОХИН, с. Макарова Московской обл.
Предлагаемое устройство целесообразно использовать совместно с регулируемым стабилизатором напряжения, не имеющим специальных узлов защиты.
Устройство предназначено для защиты регулирующего элемента стабилизатора напряжения от токовой и температурной перегрузок. Защита срабатывает при:
– превышении током нагрузки допустимого (установленного) значения;
– замыкании на выходе стабилизатора;
– превышении допустимой рассеиваемой мощности регулирующим элементом (нагрева его корпуса выше 50. 70’С).
Датчик температуры – терморезистор RK1 (рис. 1), смонтированный непосредственно на регулирующем элементе стабилизатора. При увеличении напряжения на нем открывает транзистор, который, в свою очередь, включает тринистор VS1.
Кнопки SB1 и SB2 позволяют отключать и подключать нагрузку к источнику питания, что необходимо в процессе налаживания питаемого устройства. Если защита срабатывает в результате перегрева регулирующего элемента, нагрузка не будет подключена до тех пор, пока не уменьшится его температура, о чем судят по выключению светодиода HL1.
ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ
ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ
И. АЛЕКСАНДРОВ, г. Курск
При налаживании различной радиоэлектронной аппаратуры желательно пользоваться блоком питания с встроенной и регулируемой электронной защитой по току нагрузки. Если имеющийся в вашем распоряжении блок не имеет такой защиты, ее можно выполнить в виде приставки, включаемой между выходными гнездами блока и нагрузкой. Таким образом, приставка-предохранитель в случае превышения заданного максимального тока нагрузки мгновенно отключит ее от блока питания.
Электронный предохранитель (см. рисунок) содержит мощный транзистор VT2, который включен в минусовый провод питания, два стабилизатора тока на полевых транзисторах — один регулируемый (на VT1), в другой — нерегулируемый (на VT3), и чувствительный элемент — тринистор VS1. Управляющее напряжение на тринистор поступает с датчика тока, в роли которого выступает резистор R1 весьма малого сопротивления (0,1 Ома), и с резистора R2. Данный тип тринистора включается при напряжении на управляющем электроде (относительно катода) 0,5. 0,6 В.
Ток нагрузки создает падение напряжения на резисторе R1, которое для тринистора является открывающим. Кроме того, ток, протекающий через транзистор VT1 (его можно изменять переменным резистором R3), создает падение напряжения на резисторе R2, которое также будет открывающим для тринистора. Когда сумма этих напряжений достигнет определенного значения, тринистор откроется, напряжение на нем уменьшится до 0,7. 0,8 В. Зажжется светодиод HL1 и просигнализирует об аварии. В то же время напряжение на светодиоде HL2 уменьшится настолько, что он погаснет. Транзистор VT2 закроется, и нагрузка окажется отключенной от блока питания.
Токовая защита блока питания схема
Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания – сетевыми, импульсными и аккумуляторами постоянного тока.
Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.
Силовая часть – мощный полевой транзистор – в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается.
Схема одновременно является защитой от переполюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных.
Шунт можно сделать также из резисторов с мощностью 1-3 ватт.
Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора.
При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным.
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные – IRF3205, IRL3705, IRL2505 и им подобные.
Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.
С уважением – АКА КАСЬЯН
Связанные статьи
Регулятор мощности паяльника на реле
Купил себе новый паяльник на 60Вт. Как оказалось это много. От избыточного нагрева плат при пайке от них отслаивались дорожки. Такая работа это не дело.
Дистанционная перезагрузка компьютера
Устройство предназначено для удалённой перезагрузки наглухо зависшего компьютера, сервера, роутера и прочих устройств. Управление произходит с помощью любого телефона с тональным набором.
Плата защиты LI-ION аккумуляторов
На сегодняшний день литий ионные аккумуляторы являются самыми эффективными аккумуляторами. Они компактные, имеют большую энергоемкость, лишены эффекта памяти.
Хороший лабораторный БП своими руками
На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный.
Это интересно
Страницы
Ярлыки
понедельник, 5 января 2015 г.
Схема защиты блока питания и зарядных устройств
Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания – сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.
Схема защиты блока питания
Силовая часть – мощный полевой транзистор – в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.
Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока
При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным
Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные – IRF3205, IRL3705, IRL2505 и им подобные.
Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.
Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.
Комментарии
Защита от короткого замыкания, переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.
Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.
Комментарий
Схема своего рода “НОУ-ХАУ”, по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод “ошибка подключения”. Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
собирал сегодня сие) Родная защита Дашенга даже не успевает сработать)
Принцип работы прост – при резком скачке напряжения, на шунте появляется падение напряжения, которое отпирает vt2 полевик закрывается (т.к. затвор садится на землю). При этом загорается св. диод (т.к. получает минус на затворе).
В нормальном состоянии затвор открывает положительным напряжением с цепочки св.диод-R9 Тот же принцип и при переплюсовке – от скачка тока.
Работает быстро, но криво – при выключенном блоке и подключенном аккумуляторе, на блок валит напряжение, т.к. полевик открывает акк. Я думаю, нужно делать какую-нить защиту, чтоб при пропадании напряжения зарядки, акк отключался от схемы.
Вот та же схема, только перевернутая по правильному. Использовал в зарядке, результатом доволен. Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки. В принципе, это схема защиты от тока перегрузки, но при переполюсовке именно это и случается. Кстати, при нагрузке не на аккумулятор, а на резистор у меня почему-то сразу защелкивалась на защиту. С акком – нормально. Расчет максимального тока – напряжение на шунте и канале исток-сток должно быть 0.6в для срабатывания биполярника.
>>Единственный недостаток (а может – фича!) – защелкивается, то есть после сработки требует полного отключения нагрузки. достаточно кнопку сброса сделать с базы биполярника на землю