Схемы фотореле для управления освещением
Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.
Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.
Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.
Рисунок 1. Схема простого фотореле
Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.
Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.
Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.
Напряжение питания указано в пределах 5…15В, – зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.
Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.
Схема фотореле с фотодиодом
Схема этого фотореле показана на рисунке 2.
Рисунок 2. Схема фотореле с фотодиодом
Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению операционного усилителя (ОУ). В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, – питание подано так, что фотодиод смещен в обратном направлении.
Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.
Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым – задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.
Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.
Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.
Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.
Фотореле на микросхеме
Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.
Рис. 3. Микросхема КР1182ПМ1
Рисунок 4 . Схема фотореле на микросхеме КР1182ПМ1
Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.
Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.
Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?
Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.
Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.
При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.
Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.
payaem.ru
Паяем — Все о электронике
Разные схемы фотореле
Задачей фотореле является управление освещением, зачастую, это схема с фоточувствительным элементом, которая управляет включением освещения в темное время суток. Радиолюбителями разработано множество различных схем фотореле, представим вашему вниманию простые и надежные схемы на различных фоточувствительных элементах: фоторезисторах, фотодиодах, фототранзисторах.
Первая схема фотореле на фотодиоде и вполне подойдет для начинающих, так как проста в изготовлении и не содержит редких элементов. В качестве нагрузки после ключа использован светодиод, разумеется вместо него можно применять и другую логическую схему или реле. В данной схеме фотодиод включен через стабилизатор тока, схема в таком включении дает существенную разницу при освещении и затемнении светочувствительного элемента и поэтому не требует дополнительного усилителя. При резком изменении освещения напряжениние на фотодиоде меняется от 0 до уровня напряжения питания схемы. Эту схему вы можете без труда собрать и отрегулировать за пару часов на макетной плате. Фотодиод можно использовать почти любой марки.
В данной схеме был применен ФД 256, но схема работает и с фототранзисторами. VD1 и VD2 можно ставить любые кремниевые диоды. Транзисторы также можно любые маломощные. Как я уже говорил первый транзистор работает как стабилизатор тока и чем больше будет R2, тем больше чувствительность схемы, но не перестарайтесь с настройкой. Каскад на втором транзисторе — эмиттерный повторитель , третий транзистор — обычный ключ.
Предлагаем Еще одну несложную схему с минимальным количеством деталей, и высокой чувствительностью. Такая чувствительность достигается за счет включения транзисторов VT1 и VT2 как составного. В таком включении общий коэффициент усиления будет равен произведению коэффициентов составляющих транзисторов. Также за счет этого включения достигается высокое входное сопротивление, что позволяет использовать фоторезистор и другие высокоомные источники сигнала.
Схема работает очень просто- с увеличением освещенности сопротивление фоторезистора уменьшается до нескольких килоом (в темноте — несколько мегаом) это приводит к открыванию транзистора VT1. Коллекторный ток VT1 откроет транзистор VT2, который в свою очередь включит реле и оно своими контактами включит нагрузку.Чтобы в момент включения реле не возникала самоиндукция и маломощный сигнал фоторезистора преобразовался в достаточный для включения обмотки сигнал включен VD1.
Для регулировки чувствительности этой схемы, которая иногда может быть избыточной можно поставить в схему переменный резистор, который показан на схеме пунктиром.Питание схемы зависит от рабочего напряжения реле и может быть в пределах 5-15в.При питании 6 вольт можно исплользовать РЭС 9, при 12 вольтах РЭС 15,РЭС 49. Ток обмотки при использовании указанных транзисторов не должен превышать 50 мА. если поставить вместо VT2, более мощный типа КТ 815, выходной то может быть большим и возможно использование более мощных реле. следует учитывать что при повышении питания увеличивается чувствительность фотореле.
Еще одна схема собрана на операционном усилителе и также не содержит большого количества деталей.ОУ в данной схеме включен как компаратор (сравнивающее устройство), а фотодиод включен в фотодиодном режиме, питание на него подано так, что он смещен в обратном направлении.
Из за такого включения при снижении освещенности возрастает сопротивление светодиода, и это приводит к к тому, что уменьшается падение напряжения на резисторе R1, и соответственно падает на инвертирующем входе компаратора. На неинвертирующем входе напряжение устанавливается с помощью R2, и является пороговым, то есть задает порог срабатывания. При уменьшении напряжения на инвертирующем входе ниже порогового на выходе компаратора появится уровень напряжения который откроет Т1 и включит реле.
Транзистор можно использовать любой маломощный NPN типа КТ 315, 3102. ОУ в качестве компаратора типа К140УД6 — УД7, или подобные. Для питания схемы следует использовать выпрямитель с напряжением 9-12 вольт, реле выбирать с соответствующим напряжением срабатывания обмотки.
Наладка устройства заключается в установке порогового напряжения, его следует настроить таким образом, чтобы уже при наступлении сумерек происходило включение. Для настройки порога срабатывания можно использовать регулируемую лампу накаливания в затемненной комнате.Чтобы избавиться от возможного дребезга реле при срабатывании нужно параллельно катушке присоединить конденсатор на несколько сотен микрофарад.
Как сделать фотореле своими руками?
Один из важных компонентов автоматики в наружном освещении, наравне с детекторами движения (ДД) и таймерами, это фотореле (или световое реле, сумеречный выключатель, фотодатчик). Предназначением этого устройства является включение наружного освещения и не только, при приходе темноты, без вмешательства человека.
За счет ускорения темпов технического прогресса и промышленных объемов производства сегодня цена светового реле не «кусается». В этой публикации мы рассмотрим устройство фотореле и особенности его подключения, кроме того, вы узнаете, как изготовить световое реле собственными руками.
Сфера использования
В большинстве своем световое реле предназначается для включения и отключения уличного освещения в автоматическом режиме. Имеются и иные возможности использования, в частности, посредством светового реле можно отрегулировать запуск водяного насоса фонтана с утра, а остановку под вечер. Сфера использования светоуправляемых приборов чрезвычайно обширна, они позволят решать самые разные вопросы, не только сопряженные с освещением.
Логично использование сумеречного выключателя для управления осветительным оборудованием в общественных местах, парках, торговых и промплощадках, на автопарковках, дорогах.
Устройство не позабудет включить освещение в вечернее время и выключить поутру без вмешательства человека. Система на 100% самостоятельна.
В частном домовладении также применяют автоматическое освещение, но здесь существенную роль играет цена на электрическую энергию. Отнюдь не всегда необходимо, чтобы осветительные приборы во дворе светили целую ночь, тратя недешевое электричество.
Как правило, требуется, чтобы освещение включалось с приходом темноты на протяжении определенного времени, а затем выключалось. Или же освещение включается исключительно в темное время суток на непродолжительный отрезок времени при присутствии людей в освещаемой области, например, около отхожего места, автогаража. В подобных ситуациях актуальны устройства, оборудованные вспомогательными приборами в виде ДД либо таймера.
Разновидности устройств
С учетом предназначения и исполняемых обязанностей прибор регулировки света подразделяется на несколько ключевых типов.
С интегрированным фотоэлементом (датчиком освещенности)
Нередко подобные устройства консолидированы в общий узел с управляемым осветительным прибором и предназначаются для монтажа на улице. Наделены высокой степенью влаго-, пылезащиты, не меньше IP44.
Функционируют исключительно с тем прибором, в который интегрированы.
С выносным детектором освещенности
Электронный узел монтируется в шкаф, щиток либо устанавливается в ином огражденном от влияния неблагоприятных условий погоды месте, в связи с этим требования к уровню защиты оболочки IP понижены, хватает IP20. Датчик освещенности монтируется снаружи и соединяется посредством электропроводов с электронным узлом. Требования к IP датчику освещенности аналогичны уличному исполнению, не меньше IP44.
Разнесенная структура дает возможность формировать щиты автоматизации и управления уличным освещением, где сумеречный выключатель – это один из элементов комбинированной, многоуровневой схемы.
При подсоединении электроконтактов светового реле к электромагнитному аппарату либо мощному внешнему реле открывается возможность осуществлять управление нагрузкой большой мощности, в частности, в случае управления приборами освещения автопарковки, супермаркета или автомобильной дороги.
На разные уровни напряжения
Электропитание сумеречного выключателя может быть рассчитано на разные напряжения тока, 12, 24, 220, 380 Вольт. Имеются модификации с довольно обширным спектром питающих напряжений от 12 до 264 В. Образцы на невысокое напряжение 12 и 24 В могут функционировать в схемах с использованием других источников электрической энергии, солнечных батарей, ветроэлектрических установок с аккумуляторным сопровождением.
Видов устройств управления светом достаточно много. В числе их имеются как обыкновенные, с опцией включения/отключения, так и профессиональные. Профессиональные отличаются расширенным набором функций (встраиваемые таймеры, календарь событий, возможность управлять дежурным и основным освещением).
С целью упрощения настройки и контроля за функционированием системы приборы оборудованы экраном. Наличие энергетически независимой памяти позволяет запоминать установленные настройки.
Структура сумеречного выключателя
Ключевым компонентом светового реле является фотодетектор, в электросхемах могут использоваться транзисторы, диоды, фотосопротивление (фоторезистор), фотоэлементы. При перемене величины светового потока, падающего на фотоэлектрический элемент, меняются его характеристики, такие как электросопротивление резистора, перемена состояния электронно-дырочного перехода в полупроводниковых триодах и диодах, а также перемена напряжения на контактах фотоэлемента.
Затем сигнал обнаруживается усилителем и устройством сравнения (компаратором – в его роли можно задействовать операционный усилитель типа К140УД6, К140УД7 либо аналогичные) и осуществляется переключение двухтактного эмиттерного повторителя, переключая или отключая нагрузку.
В роли выходных элементов управления применяют реле или симметричный триодный тиристор. При подсоединении светового реле нужно ознакомиться с практическим руководством, особенно предельной мощностью выходного узла, уделить внимание виду лампочек освещения (диодные лампы, газоразрядные, накаливания).
Необходимо знать, что фотореле с тиристорным выходом не может функционировать с энергосберегающими лампочками, не предназначенными для этого, и монтируются в регулятор мощности лучистой энергии лампы. Этот аспект нужно принимать во внимание, чтобы не остаться со ставшими неработоспособными световым реле и лампочкой. Теперь разберем пару схем для сборки светового реле в домашних условиях своими силами.
Самостоятельная сборка
Исходя из того, какой вид светового реле вы избрали, будет определяться и схема его изготовления. Сейчас мы рассмотрим простую схему, по которой можно будет без каких-либо затруднений смонтировать прибор своими руками. В собственной основе фотореле имеет микросхему КР1182ПМ1. Если на улице светло, фоторезистор (фотодиод) VT1 засвечен. Протекающий через его p-n переход электроток закрывает внутри фазового регулятора симисторы. Вследствие этого симистор VS1 окажется закрыт, а лампочка EL1 не станет светиться.
Как только подходит вечер, происходит понижение освещенности фотодиода VT1. Вследствие этого уменьшается и электроток, проходящий через p-n переход. Это влечет за собой то, что в микросхеме открываются транзисторы. Они, как правило, содействуют открыванию симистора VS1 и включению лампочки.
Лишь потому, что схема изготовления подобного датчика не имеет пороговых компонентов, включение лампочки и ее отключение осуществляется размеренно. Помимо этого, большая чувствительность сумеречного выключателя дает возможность включаться осветительному прибору на всю силу исключительно при приходе глубоких сумерек.
Дабы уменьшить помехи в деятельности самодельного устройства, в схему необходимо добавить катушку индуктивности L1 и конденсатор C4.
В роли конденсатора нужно брать К73-16 либо К73-17 с напряжением не меньше 400 В. Равным образом можно применять конденсаторы К50-35. На теплоотвод с поверхностной платформой в 300 см2 нужно инсталлировать симистор VS1. Катушку индуктивности делаем из 2 склеенных ферритовых фильтров К38×24×7 (можете взять модель М2000НМ). Обмотку накручиваем в один слой, который должен состоять из 70 витков проволоки ПЭВ-2 с сечением в 0,82 миллиметра.
Грамотно собранное световое реле не имеет нужды в отладке. При возникновении потребности увеличить чувствительность в схему следует добавить еще один фотодиод. При его отсутствии можно сделать из старого транзистора МП 39 либо МП 42 – срезать у него оболочку напротив коллектора. При отладке непременно соблюдайте меры предосторожности, поскольку все элементы прибора будут пребывать под напряжением.
Второй метод сборки
Имеется и несколько иной метод. Тут сборка осуществляется на основе полупроводникового встроенного устройства Q6004LT (квадрак). В такой версии вам потребуются:
- устройство Q6004LT;
- фотодиод;
- обыкновенный резистор.
Собранный прибор будет питаться от электросети в 220 В. Принцип действия этой схемы такой.
- Свет создает на фотодатчике небольшое сопротивление. Одновременно на управляющем электроде устройства Q6004LT будет пребывать маленькое напряжение.
- Квадрак останется закрытым. Вследствие чего сквозь него электроток проходить не будет.
- Когда светосила уменьшится, на фотодиоде увеличится сопротивление, что будет способствовать резкой смене напряжения, подающегося на тринистор.
- Повышение амплитудного значения напряжения до метки в 40 В влечет за собой открытие симистора. По цепи побежит ток, в итоге включится освещение.
Чтобы произвести настройки этой схемы, нужно использовать резистор. Его изначальное сопротивление должно быть 47 кОм, но сила сопротивления должна выбираться с учетом типа задействованного в электросхеме фотодиода. В роли фотодатчика можно применять следующие компоненты: СФ3-1, ФСК-7 либо ФСК-Г1.
Использование мощного устройства Q6004LT позволяет подсоединить к самодельному прибору нагрузку мощностью до 500 Вт. А применение в схеме вспомогательного теплоотвода даст возможность повысить мощность до 750 Вт. В будущем возможно использование квадрака, обладающего рабочими токами 6, 8, 10 либо 15 А.
Основные достоинства такой схемы сборки – это минимальное количество элементов, нет блока питания и возможность увеличения мощности. Вследствие этого сборка данного прибора в домашних условиях пройдет довольно скоро и без затруднений, даже когда этим займется новичок.
О том, как собрать фотореле своими руками, смотрите далее.
Как сделать фотореле в домашних условиях — самый простой способ
Одним из основных элементов автоматики в уличном освещении, наряду с таймерами и датчиками движения, является фотореле или сумеречное реле. Назначение данного аппарата — автоматическое подключение полезной нагрузки, при наступлении темного времени суток, без участия человека. Это устройство также получило огромную популярность благодаря своей дешевизне, доступности и простоте подключения. В данной статье мы подробно разберем принцип работы сумеречного выключателя и нюансы его подключения, а также расскажем, как сделать фотореле своими руками. Это не отнимет много времени и сил, зато вам будет приятно пользоваться самостоятельно собранным устройством.
Конструкция реле
Основным элементом реле является фотодатчик, в схемах могут применяться фоторезисторы, диоды, транзисторы, фотоэлектрические элементы. При изменении освещенности на фотоэлементе соответственно изменяются и его свойства, такие как сопротивление, состояния P-N перехода в диодах и транзисторах, а также напряжения на контактах фоточувствительного элемента. Далее сигнал усиливается и происходит переключение силового элемента, коммутирующего нагрузку. В качестве выходных управляющих элементов используют реле или симисторы.
Почти все покупные элементы собраны по схожему принципу и имеют два входа и два выхода. На вход подается сетевое напряжение 220 Вольт, которое, в зависимости от установленных параметров, появляется и на выходе. Иногда фотореле имеет всего 3 провода. Тогда ноль – общий, на один провод подается фаза, и при нужной освещенности она соединяется с оставшимся проводом.
При подключении фотореле необходимо ознакомится с инструкцией, обратить особое внимание на максимальную мощность подключаемой нагрузки, тип ламп освещения (накаливания, газоразрядные, светодиодные лампочки). Важно знать, что реле освещения с тиристорным выходом не смогут работать с энергосберегающими лампами, а также с некоторыми видами диммеров из-за конструктивных особенностей. Этот нюанс необходимо учитывать, чтобы не повредить оборудование.
Давайте рассмотрим несколько схем для самостоятельной сборки сумеречного выключателя в домашних условиях. Для примера разберем, как сделать симисторный ночник с фотоэлементом.
Инструкция по сборке
Это самая элементарная схема фотореле из нескольких деталей: симистора Quadrac Q60, опорного резистора R1, и фото элемента ФСК:
При отсутствии света симисторный ключ открывается полностью и лампа в ночнике светит в полный накал. При увеличении освещенности в помещении происходит смещение напряжения на управляющем контакте и меняется яркость светильника, вплоть до полного затухания лампочки.
Обратите внимание, что в схеме присутствует опасное для жизни напряжение. Подключать и тестировать ее необходимо с особой аккуратностью. А готовое устройство обязательно должно быть в диэлектрическом корпусе.
Следующая схема с релейным выходом:
Транзистор VT1 усиливает сигнал с делителя напряжения, который состоит из фоторезистора PR1 и резистора R1. VT2 управляет электромагнитным реле К1, которое может иметь как нормально разомкнутые, так и нормально замкнутые контакты, в зависимости от назначения. Диод VD1 шунтирует импульсы напряжения во время отключения катушки, защищая транзисторы от выхода из строя из-за бросков обратного напряжения. Рассмотрев данную схему, можно обнаружить, что ее часть (выделенная красным) по функционалу близка к готовым сборкам релейного модуля для ардуино.
Слегка переделав схему и дополнив ее одним транзистором и солнечным фотоэлементом от старого калькулятора, был собран прототип сумеречного выключателя — самодельное фотореле на транзисторе. При освещении солнечного элемента PR1, транзистор VT1 открывается и подает сигнал на выходной релейный модуль, который переключает свои контакты, управляя полезной нагрузкой.
Если у вас остались вопросы, то посмотрите видео, на которых также подробно рассказывается, как сделать фотореле своими руками:
Вот, собственно и вся информация о сборке фотореле своими руками. Надеемся, предоставленные схемы и видео уроки помогли вам сделать сумеречный выключатель из подручных средств!
Наверняка вы не знаете:
Проверенная схема фотореле для освещения растений
Всем привет. Как ожидалось, опять пришла весна. А вместе с ней и некоторые вопросы и думки о предстоящей посевной на приусадебном огороде. Да простят меня автомобили, но сегодня поговорю об этом. Так что, суровые водители автотранспорта, интересующиеся только им, а также жаждущие поржать, могут отдохнуть и не читать дальше.
Меня лично озаботила тема, как организовать дополнительную подсветку рассады в не очень светлом помещении. Дело в том, что у меня помидорно-перечный питомник организован в мастерской при гараже (дабы не мусорить в доме). Так вот, там одно окно на запад, да еще притемненное находящейся над ним террасой второго этажа. Короче, ацки мало света, однако!
Как известно, оптимальная освещенность рассады должна быть где-то около 8000 люкс. А от окна у меня в светлый день от силы 1000 люкс. То есть почти в десять раз меньше, чем желают вершки и корешки. Вот и решил одолеть эту злобную тему. А заодно рассказать и поделиться некоторыми своими технологическими приемами при изготовлении электронных устройств детской сложности, так как, несмотря на простоту в целом, сам часто сталкивался с проблемками, которые приходилось так или иначе решать.
Собственно подсветка у меня организована конструкцией из четырех светодиодных прожекторов, подвешенных к потолку над рассадой. Но их нужно утром включить, а вечером выключить (такой цикл жизни у растений, в отличие от людей, которые спят и бодрствуют иногда очень затейно). Кто-то скажет, а в чем проблема? Ну включай и выключай, или уже и это лень?! Для таких злых людей поясню, что мне приходится постоянно уезжать дня на два-три в неделю. А это уже проблема. На фазенде никого нет, кроме видеокамер, у которых, как известно другие важные задачи.
Итак, поехали! Надо сделать фотореле, которое будет включать светильники на рассвете и выключать вечером в сумерки. Схему взял проверенную ранее на термореле включения и выключения вентиляторов охлаждения в блоке питания, о котором писал ранее.
Только слегка доработал ее. Естественно вместо терморезистора применил фоторезистор ФР-765. А номинал резистора R1 увеличил до 820 ком. Опробовал работу схемы на макетной плате, запитав ее от лабораторного источника.
В качестве источника питания схемы взял имеющийся AC-DC преобразователь на 12в. Он идеально компоновался вместе с платой в небольшой корпус.Индикаторный светодиод не применял, так как индикация наглядно происходит путем включения четырех прожекторов по 100 ватт (как уж не понять, что, — Ура! Сработало!).
Сделал разводку платы в Sprint-Layuot с учетом компоновки в корпусе.
А дальше нужно делать плату методом ЛУТ (лазерно утюжная технология). Распечатал рисунок платы на лазерном принтере ( у меня HP) на желтой китайской термобумаге (она мне наиболее нравится из всего опробованного, так как стабильно дает результаты при переносе изображения на фольгированный стеклотекстолит и легко отделяется от него после переноса). В настройках принтера нужно задать максимальный расход тонера. Заготовка платы ошкуривается нулевкой и обезжиривается ацетоном. Заготовку платы делаю несколько больше, чем нужный размер, чтобы зафиксировать бумагу с рисунком на ней при помощи полосок малярного скотча шириной 20 мм ( это скотч шириной 20 мм, не полоски), которые наклеиваются, как показано на фото и загибаются за края заготовки. Малярный скотч надежно удерживает бумагу на заготовке при прогреве ее утюгом, не плавится и легко отделяется потом не оставляя следов. К этому я пришел после многих разных экспериментов, как к наиболее оптимальному способу фиксации. Вот примерно так.
Далее собственно ЛУТ. Утюг ставится на максимальную температуру. Пока он греется, кладу заготовку платы на доску бумагой с рисунком вверх. Накрываю ее листом, сложенным вдвое, обычной офисной бумаги. сверху накрываю тоже сложенным вдвое тонким вафельным полотенцем, какие сейчас продаются как ветошь за копейки.Дальше начинаю проглаживать этот бутерброд утюгом с небольшим нажимом в течение полутора минут. Затем заготовку оставляю остывать естественным образом. Когда она остынет до комнатной температуры, осторожно отделяю бумагу от медного слоя заготовки.
Здесь важно правильно выдержать время прогрева, чтобы не пересох тонер. Я несколько передержал, поэтому огрехи поправляются кислотостойким маркером.
Далее — собственно травля. Ее описывать не буду, процедура известная. После травления смываем тонер с платы тампоном, смоченным ацетоном. Вот, что получилось. Не бог весть, но приемлемо.
Далее обрезаем заготовку в размер. Для того, чтобы это легко можно было сделать, при разводке платы в Sprint-Layout я выбираю опцию с контуром платы. По этим линиям обрезаю плату в размер. Чем бы вы думали? Ножницами…, по металлу. Они прекрасно режут текстолит и нет пыли, как от ножовки.
Дальше нужно плату облудить. Для этого я использую сплав Розе. Этот сплав имеет температуру плавления около 99 градусов. В небольшой металлической емкости с антипригарным покрытием (расплавленный сплав к нему не пристает) с водой на портативной газовой плитке расплавляю кусочек сплава Розе ( в воду необходимо добавить немного лимонной кислоты, примерно чайную ложку без горки на стакан воды), кладу туда плату рисунком на расплавленный сплав (похожий на ртуть, такой же подвижный), немного прижимаю передвигая туда-сюда плату, затем переворачиваю плату рисунком вверх. Силиконовой лопаточкой (коих масса в хоз. отделах) растираю расплавленный сплав по поверхности рисунка, залуживая его тонким слоем.Вот, что получилось.
Далее сверлим отверстия. Я пользуюсь маленьким и легким китайским сверлильным станочком с плавной регулировкой оборотов, к которому сделал подсветку зоны сверления.
Пробовал ручные микросверлилки, но это не то. Здесь строго вертикально подается сверло (я использую твердосплавные германские сверла, которые хоть и стоят 150 руб . штука, но того стоят) и вероятность сломать его крайне мала. Разве что в неадекватном состоянии, но в этом случае лучше заняться чем-то другим, например смотреть широко на мир говяжьим взглядом. Ну а теперь собираем схему на плате. Вот, что получилось.
Если монтаж выполнен правильно, то схема запускается сразу. Наладка заключается в регулировке подстроечным резистором световых порогов срабатывания реле. Я настроил примерно на 30 люкс с учетом некоторого гистерезиса, который задается резистором обратной связи R3.
Кстати о гистерезисе. Я выбрал эту схему еще и потому, что при срабатывании реле на граничных значениях (что в термореле, что в фотореле) абсолютно отсутствует дребезг контактов реле. Срабатывания четкие. Хотя, мы знаем, как медленно меняется освещенность при утренних и вечерних сумерках. Но даже в этом случае нет пограничных эффектов. Вот готовое изделие с розеткой питания нагрузки.
А это оно в работе.
Ну вот, теперь еще одной проблемой стало меньше. И еще. Это фотореле можно использовать и в режиме включения света с наступлением темноты и выключения его с ростом освещенности. То есть, как автоматическое включение освещения чего-либо в ночное время. Для этого задействуется лишь другой контакт реле. На рисунке печатной платы это видно. Всем добра!
Фотореле для светодиодной кухонной подсветки своими руками
Пришёл в гости друг с вопросом – а можно ли сделать фотореле для светодиодной кухонной подсветки? Подсветка самодельная – метр обычной светодиодной ленты с потребляемым током 0,3 А. Напряжение питание будет не очень стабильное – что то около 11 В. Нужно чтобы при наступлении вечерних сумерек освещение включалось, а при окончании утренних выключалось. Контроль уровня освещённости должен иметь петлю гистерезиса для того, чтобы исключить мерцание при включении освещения.
Конечно же, сразу захотелось сказать «да не вопрос, чего там делать-то!». Но решил сказать «надо попробовать» – мало ли чего, вот например, совсем не помню, какие есть в наличии фоточувствительные приборы…
И, в общем, правильно сделал, что не стал торопиться. Оказалось, что есть только фотодиоды ФД-8К и два фоторезистора разных типов – один, похоже, импортный со стёртой маркировкой, второй – наш «советский» ФСД-1 (немного «покоцаный» за долгую жизнь) (рис.1). Во время экспериментов оказалось, что собирать простую схему намного проще на опторезисторе, так как фотодиод имеет большую чувствительность и, кроме того, что нужный порог срабатывания поймать достаточно трудно, так ещё и нужно качественное питание, без пульсаций и просадок, чтобы этот порог не менялся.
В общем, после небольших экспериментов и макетирования «воздушным монтажом» (рис.2) родилась схема, показанная на рисунке 3.
Датчиком освещённости является фоторезистор R1, образующий совместно с подстроечным резистором R2 делитель напряжения с возможностью изменения уровня контролируемого напряжения. Цепочка R3С1 – фильтр низкой частоты с частотой среза около 9 Гц (по -3dB). На транзисторах VT1 и VT2 собран триггер Шмита, обладающий петлёй гистерезиса (принципиальная схема взята из [1], стр.301) с порогами срабатывания около 0,63 В и 1,7 В при напряжении питания 12 В (величина петли определяется сопротивлением резистора R6 – чем меньше сопротивление, тем меньше разница между порогами срабатывания). При питании 10 В границы смещаются вниз – 0,62 В и 1,5 В. Выходной сигнал триггера управляет транзистором VT3, нагрузкой которого является светодиодная лента LS603 длиной 1 метр (рис.4). Резистор R7 ограничивает ток базы VT3. Падение напряжения на этом транзисторе в открытом состоянии не превышает 140 мВ.
Было собрана два варианта плат – с обычными выводными деталями и с SMD монтажом. Первый вариант был оставлен себе, второй отдан другу. На рисунке 5 показаны этапы изготовления фотореле с SMD деталями – голая плата, плата с деталями, настройка и то, что в итоге получилось в корпусе и было отдано на установку (схема на рисунке 6.) Некоторые номиналы резисторов отличаются от указанных на рисунке 3, транзисторы применены PMSS3904 (маркировка р04) и FMMT2907A (маркировка 2F). В самый последний момент в схему был добавлен ещё один подстроечный резистор сопротивлением 4,7 кОм – он установлен параллельно R5. Это даёт возможность менять границы петли гистерезиса (на схеме не показан, тип резистора – СП3-4бМ).
Все детали взяты со старых компьютерных плат (рис.7) – материнок, видеокарт и сетевых карт. Замена элементов может быть разнообразной, главное – это чтобы ток через резистор R7 не превышал максимального значения для VT3 и чтобы ток потребления светодиодной ленты не превышал максимального значения тока коллектора VT3. Также следует учитывать соотношение сопротивлений резисторов R4R5R6, так как при «малой петле» гистерезиса возможно моргание ленты, а при очень «большой» есть вероятность, что освещение отключится только к полудню или даже не отключится вовсе в сумрачные дни.
Для питания фотореле подойдут любые блоки питания – импульсные или трансформаторные (рис.8), главное, чтобы они могли долговременно работать с тем током, что потребляет лента (не менее 0,3 А) и чтобы их выходное напряжение было выпрямлено и отфильтровано и находилось в нужных пределах (11 В…13 В).
В результате всех этих экспериментов в моём варианте подсветка получилась достаточно яркой (рис.9.), хотя ещё не полностью сделана над электрической плитой.
Выше была показана печатная плата с резанными дорожками, но в приложении к тексту находится файл разводки печатной платы в программе Sprint-Layout для варианта с SMD деталями (размер 10мм х 24мм). Вид сделан со стороны печати, при изготовлении по лазерно-утюжной технологии нужно включить режим «зеркально».
Естественно, автоматическое включение подсветки можно использовать не только на кухне – можно оформить компьютерный стол, можно применить в комнатах, коридоре, мастерской или гараже.
Литература.
1. Горошков Б.И., «Радиоэлектронные устройства», Москва, «Радио и связь», 1984.
Андрей Гольцов, r9o-11, г. Искитим, август 2018