Терморезисторы принцип работы

Терморезисторы. Виды и устройство. Работа и параметры

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

На электрических схемах терморезисторы обозначаются:

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры
  • ТКС – термический коэффициент сопротивления , равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы) . А если ТКС отрицательный, то термисторами (NТС-термисторы) . У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы . Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния . Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Что такое термистор (терморезистор)

Термистор представляет собой резистивный термометр или резистор, сопротивление которого зависит от температуры. Термин представляет собой комбинацию термо и резистор. Он изготовлен из оксидов металлов, спрессован в шарики, диски или цилиндрическую форму, а затем герметизирован непроницаемым материалом, таким как эпоксидная смола или стекло.

Существует два типа термисторов: отрицательный температурный коэффициент (NTC) и положительный температурный коэффициент (PTC). С термистором NTC, когда температура увеличивается, сопротивление уменьшается. И наоборот, когда температура снижается, сопротивление увеличивается. Этот тип термистора используется чаще всего.

Термистор PTC работает немного по-другому. Когда температура увеличивается, сопротивление увеличивается, а когда температура уменьшается, сопротивление уменьшается. Этот тип термистора обычно используется в качестве предохранителя. Огромный выбор терморезисторов вы можете посмотреть и приобрести на Алиэкспресс:

Как правило, термистор достигает высокой точности в ограниченном температурном диапазоне около 50ºC относительно целевой температуры. Этот диапазон зависит от базового сопротивления.

Термистор на схеме

Стрелка Т обозначает, что сопротивление является переменным в зависимости от температуры. Направление стрелки или полосы не имеет значения.

Термисторы просты в использовании, недороги, прочны и предсказуемо реагируют на изменения температуры. Хотя они не очень хорошо работают при чрезмерно высоких или низких температурах, они являются предпочтительным датчиком для применений, которые измеряют температуру в желаемой базовой точке. Они идеальны, когда требуются очень точные температуры.

Некоторые из наиболее распространенных применений термисторов используются в цифровых термометрах, в автомобилях для измерения температуры масла и охлаждающей жидкости, а также в бытовых приборах, таких как духовки и холодильники, но они также встречаются практически в любом приложении, где для обеспечения безопасности требуются защитные контуры отопления или охлаждения. Для более сложных приложений, таких как детекторы лазерной стабилизации, оптические блоки и устройства с зарядовой связью, встроен термистор. Например, термистор 10 кОм является стандартом, который встроен в лазерные пакеты.

История термистора

Майкл Фарадей — английский ученый впервые открыл понятие термисторов в 1833 году, сообщая о полупроводниковом поведении сульфида серебра. Благодаря своим исследованиям он заметил, что устойчивость к сульфидам серебра снижалась с повышением температуры. Это открытие впоследствии привело к коммерческому производству термисторов в 1930-х годах, когда Сэмюэль Рубен изобрел первый коммерческий термистор. С тех пор технология улучшилась; прокладывать дорогу к совершенствованию производственных процессов; наряду с доступностью более качественного материала.

Как работает термистор

Термистор на самом деле ничего не «читает», вместо этого сопротивление термистора меняется в зависимости от температуры. Степень изменения сопротивления зависит от типа материала, используемого в термисторе.

В отличие от других датчиков, термисторы являются нелинейными, то есть точки на графике, представляющие взаимосвязь между сопротивлением и температурой, не будут образовывать прямую линию. Расположение линии и степень ее изменения определяется конструкцией термистора. Типичный график термистора выглядит следующим образом:

Как изменение сопротивления преобразуется в измеримые данные, будет подробно рассмотрено ниже.

Разница между термистором и другими датчиками

В дополнение к термисторам используются несколько других типов датчиков температуры. Наиболее распространенными являются резистивные датчики температуры (RTD) и интегральные схемы (IC), такие как типы LM335 и AD590. Какой датчик лучше всего подходит для конкретного использования, зависит от многих факторов. В приведенной ниже таблице дано краткое сравнение преимуществ и недостатков каждого из них.

0.05° С

0.01° С

0.01° С

ПараметрТермисторRTDLM335AD592
Разница температурВ пределах

50° С от заданной центральной температуры

От −260° C до + 850° CОт −40° C до + 100° CОт -20° C до + 105° C
Относительная стоимостьНедорогойСамый дорогойДорогойДорогой
Постоянная времениОт 6 до 14 секундОт 1 до 7 секундОт 1 до 3 секундОт 2 до 60 секунд
СтабильностьОчень стабильный, 0,0009° C
ЧувствительностьВысокоНизкийНизкийНизкий
ПреимуществаДолговечный
Долгоиграющий
Высокочувствительный
Маленький размер
Самая низкая
СтоимостьЛучше всего подходит для измерения температуры в одной точке
Лучшее время отклика
Линейный выход
Самый широкий диапазон рабочих температур
Лучше всего для измерения диапазона температур
Умеренно дорого
Линейный выход
Умеренно дорого
Линейный выход
НедостаткиНелинейный выход
Ограниченный температурный диапазон
Медленное время отклика
Дорого
Низкая чувствительность
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер
Самое медленное время отклика
Ограниченный температурный диапазон
Низкая чувствительность
Большой размер

Температурный диапазон: приблизительный общий диапазон температур, в которых может использоваться тип датчика. В пределах заданного температурного диапазона некоторые датчики работают лучше, чем другие.

Относительная стоимость: относительная стоимость, поскольку эти датчики сравниваются друг с другом. Например, термисторы недороги по отношению к термометрам сопротивления, отчасти потому, что предпочтительным материалом для термопреобразователей сопротивления является платина.

Постоянная времени: приблизительное время, необходимое для перехода от одного значения температуры к другому. Это время в секундах, которое термистору требуется для достижения 63,2% разницы температур от начального показания до окончательного.

Стабильность: способность контроллера поддерживать постоянную температуру на основе обратной связи датчика температуры.

Чувствительность: степень реакции на изменение температуры.

Преимущества и недостатки NTC и PTC

Термисторы NTC прочны, надежны и стабильны, и они оборудованы для работы в экстремальных условиях окружающей среды и помехоустойчивости в большей степени, чем другие типы датчиков температуры.

  • Компактный размер: варианты упаковки позволяют им работать в небольших или ограниченных пространствах; тем самым занимая меньше места на печатных платах.
  • Быстрое время отклика: небольшие размеры позволяют быстро реагировать на изменение температуры, что важно, когда требуется немедленная обратная связь.
  • Экономичность: термисторы не только дешевле, чем другие типы датчиков температуры; Если приобретенный термистор имеет правильную кривую RT, никакая другая калибровка не требуется во время установки или в течение срока ее эксплуатации.
  • Совпадение точек: способность получить определенное сопротивление при определенной температуре.
  • Соответствие кривой: сменные термисторы с точностью от + 0,1 ° C до + 0,2 ° C.

Какие типы и формы термистора доступны на рынке

Термисторы бывают разных форм — дисковые, микросхемы, шариковые или стержневые и могут монтироваться на поверхности или встраиваться в систему. Они могут быть заключены в эпоксидную смолу, стекло, обожжены в феноле или окрашены. Наилучшая форма часто зависит от того, какой материал контролируется, например, от твердого вещества, жидкости или газа.

Например, терморезистор с бусинками идеально подходит для встраивания в устройство, а стержень, диск или цилиндрическая головка лучше всего подходят для оптических поверхностей. Термисторный чип обычно монтируется на печатной плате (PCB). Существует много, много разных форм термисторов, и некоторые примеры:

Выберите форму, которая обеспечивает максимальный контакт поверхности с устройством, температура которого контролируется. Независимо от типа термистора, соединение с контролируемым устройством должно быть выполнено с использованием теплопроводящей пасты или эпоксидного клея. Обычно важно, чтобы эта паста или клей не были электропроводящими.

Какое сопротивление термистора и ток смещения следует использовать

Термисторы классифицируются по величине сопротивления, измеренной при комнатной температуре окружающей среды, которая считается 25° C. Устройство, температуру которого необходимо поддерживать, имеет определенные технические характеристики для оптимального использования, как определено производителем. Они должны быть определены до выбора датчика. Поэтому важно знать следующее.

Каковы максимальные и минимальные температуры для устройства

Термисторы идеально подходят для измерения температуры в одной точке, которая находится в пределах 50 ° C от температуры окружающей среды. Если температура слишком высокая или низкая, термистор не будет работать. Хотя есть исключения, большинство термисторов работают лучше всего в диапазоне от -55 ° C до + 114 ° C.

Поскольку термисторы являются нелинейными, то есть значения температуры и сопротивления изображены на графике в виде кривой, а не прямой линии, очень высокие или очень низкие температуры регистрируются неправильно. Например, очень небольшие изменения при очень высоких температурах будут регистрировать незначительные изменения сопротивления, которые не приведут к точным изменениям напряжения.

Каков оптимальный диапазон термисторов

В зависимости от тока смещения от контроллера каждый термистор имеет оптимальный полезный диапазон, то есть диапазон температур, в котором небольшие изменения температуры точно регистрируются.

В таблице ниже приведены наиболее эффективные диапазоны температур для термисторов с длиной волны при двух наиболее распространенных токах смещения.

Лучше всего выбрать термистор, где заданная температура находится в середине диапазона. Чувствительность термистора зависит от температуры. Например, термистор может быть более чувствительным при более низких температурах, чем при более высоких температурах, как в случае с термистором TCS10K5 10 кОм длины волны. В TCS10K5 чувствительность составляет 162 мВ на градус Цельсия в диапазоне от 0 до 1° C, и 43 мВ / °C в диапазоне от 25 до 26 ° C, и 14 мВ ° C в диапазоне от 49 до 50 ° C. C.

Каковы верхний и нижний пределы напряжения на входе датчика регулятора температуры

Пределы напряжения обратной связи датчика к регулятору температуры устанавливаются производителем. В идеале следует выбрать комбинацию термистора и тока смещения, которая создает напряжение в пределах диапазона, разрешенного регулятором температуры.

Напряжение связано с сопротивлением по закону Ома. Это уравнение используется для определения того, какой ток смещения необходим. Закон Ома гласит, что ток через проводник между двумя точками прямо пропорционален разности потенциалов между двумя точками и для этого тока смещения записывается как:

Где:
V — напряжение, в вольтах (В)
I BIAS — ток, в амперах или амперах (A)
I BIAS — постоянный ток,
R — сопротивление, в Ом (Ом)

Контроллер генерирует ток смещения для преобразования сопротивления термистора в измеряемое напряжение. Контроллер принимает только определенный диапазон напряжения. Например, если диапазон контроллера составляет от 0 до 5 В, напряжение термистора должно быть не ниже 0,25 В, чтобы электрические помехи на нижнем конце не мешали считыванию, и не должно превышать 5 В для считывания.

Предположим, что используется вышеуказанный контроллер и термистор 100 кОм, такой как TCS651 длины волны, и температура, которую необходимо поддерживать устройству, составляет 20° C. Согласно спецификации TCS651, сопротивление составляет 126700 Ом при 20 ° C. Чтобы определить, может ли термистор работать с контроллером, нам нужно знать полезный диапазон токов смещения. Используя закон Ома, чтобы решить для I BIAS , мы знаем следующее:

0,25 / 126700 = 2 мкА — нижний
предел диапазона 5,0 / 126700 = 39,5 мкА — верхний предел

Да, этот термистор будет работать, если ток смещения регулятора температуры можно установить в диапазоне от 2 мкА до 39,5 мкА.

При выборе термистора и тока смещения лучше всего выбрать тот, в котором развиваемое напряжение находится в середине диапазона. Входной сигнал обратной связи контроллера должен быть под напряжением, которое выводится из сопротивления термистора.

Поскольку люди наиболее легко относятся к температуре, сопротивление часто нужно менять на температуру. Наиболее точная модель, используемая для преобразования сопротивления термистора в температуру, называется уравнением Стейнхарта-Харта.

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Терморезисторы

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его “потроха”. Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или “Отрицательный Коэффициент Сопротивления”. Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 – VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить “плавный запуск” электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в “подогретом” состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC – Positive Temperature Coefficient, “Положительный Коэффициент Сопротивления”).

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук “бдзынь”, когда включается телевизор – это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-“таблеток”, которые установлены в одном корпусе. На вид эти “таблетки” абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3

3,6 кОм, а у другой всего лишь 18

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора – это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Что такое терморезисторы и для чего они нужны

Устройство и виды

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.
  • ТКС.

Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Основные сведения

Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:

Кроме этого нужно обратить внимание на его вольтамперную характеристику:

Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

  • Линейный участок используется для измерения температуры;
  • Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

На видео ниже рассказывается, что такое позисторы:

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

  1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
  2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
  3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
  4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

Наверняка вы не знаете:

Датчики температуры. Часть вторая. Терморезисторы

В первой части статьи было коротко рассказано об истории возникновения различных температурных шкал и их изобретателях Фаренгейте, Реомюре, Цельсии и Кельвине. Теперь стоит познакомиться с температурными датчиками, принципами их работы, приборами для получения данных от этих датчиков.

Доля измерения температуры в технологических измерениях

В современном промышленном производстве производится измерение множества различных физических величин. Из них массовый и объемный расход составляет 15%, уровень жидкостей 5%, время не более 4%, давление около 10% и так далее. А вот измерение температуры составляет почти 50% от общего количества технических измерений.

Такой высокий процент достигается числом точек измерения. Так на среднего размера атомной электростанции температура может измеряться примерно в 1500 точках, а на крупном химзаводе это количество достигает двадцати и более тысяч.

Такое количество говорит не только о широком разнообразии средств измерений и как следствие множестве первичных преобразователей и датчиков температуры, а также о постоянно возрастающих требованиях к точности, быстродействию, помехоустойчивости и надежности приборов измерения температуры.

Основные виды температурных датчиков, принцип работы

Практически все температурные датчики, применяемые в современном производстве, используют принцип преобразования измеряемой температуры в электрические сигналы. Такое преобразование основано на том, что электрический сигнал возможно передавать с высокой скоростью на большие расстояния, в электрические же сигналы могут быть преобразованы любые физические величины. Преобразованные в цифровой код эти сигналы могут быть переданы с высокой точностью, а кроме того введены для обработки в компьютер.

Термопреобразователи сопротивления

Их также еще называют терморезисторами. Принцип действия их основан на том, что все проводники и полупроводники имеют Температурный Коэффициент Сопротивления сокращенно ТКС. Это примерно то – же, что и известный всем коэффициент температурного расширения: при нагревании тела расширяются.

Следует заметить, что все металлы обладают положительным ТКС. Другими словами электрическое сопротивление проводника увеличивается при возрастании температуры. Здесь можно вспомнить тот факт, что лампы накаливания перегорают чаще всего в момент включения, пока спираль холодная и сопротивление ее невелико. Отсюда и повышенный ток при включении. Полупроводники имеют отрицательный ТКС, при увеличении температуры их сопротивление уменьшается, но об этом будет сказано чуть выше.

Металлические терморезисторы

Казалось бы, что в качестве материала для терморезисторов возможно использовать любой проводник, однако, ряд требований предъявляемых к терморезисторам, говорит что это не так.

Прежде всего, материал для изготовления температурных датчиков, должен обладать достаточно большим ТКС, а зависимость сопротивления от температуры должна быть достаточно линейной в широком диапазоне температур. Кроме того металлический проводник должен быть инертен к воздействию окружающей среды и обеспечивать хорошую воспроизводимость свойств, что позволит производить замену датчиков не прибегая к различным тонким настройкам измерительного прибора в целом.

По всем указанным свойствам почти идеально подходит платина (если не считать высокой цены), а также медь. Такие терморезисторы в описаниях называются медные (ТСМ-Cu) и платиновые (ТСП-Pt).

Терморезисторы ТСП могут использоваться в диапазоне температур -260 – 1100°C. Если измеряемая температура находится в пределах 0 – 650°C, то датчики ТСП могут использоваться в качестве эталонных и образцовых, поскольку нестабильность градуировочной характеристики в этом диапазоне не превышает 0,001°C. К недостаткам терморезисторов ТСП можно отнести высокую стоимость и нелинейность функции преобразования в широком диапазоне температур. Поэтому точное измерение температур возможно лишь в указанном в технических данных диапазоне.

Большее распространение на практике получили более дешевые медные терморезисторы марки ТСМ, зависимость сопротивления от температуры у которых достаточно линейна. Как недостаток медных резисторов можно считать низкое удельное сопротивление, и недостаточная устойчивость к воздействию высоких температур (легкая окисляемость). Поэтому медные терморезисторы имеют предел измерения не свыше 180°C.

Для подключения датчиков типа ТСМ и ТСП используется двухпроводная линия, если удаление датчика от прибора не превышает 200м. Если это расстояние больше, то используется трехпроводная линия связи, в которой третий провод используется для компенсации сопротивления подводящих проводов. Подобные способы подключения подробно показаны в технических описаниях приборов, которые комплектуются датчиками ТСМ или ТСП.

К недостаткам рассмотренных датчиков следует отнести их низкое быстродействие: тепловая инерционность (постоянная времени) таких датчиков находится в пределах от десятков секунд до нескольких минут. Правда, изготавливаются и малоинерционные терморезисторы, постоянная времени которых не более десятых долей секунды, что достигается за счет их малых габаритов. Такие терморезисторы изготавливают из литого микропровода в стеклянной оболочке. Они высокостабильны, герметизированы, и малоинерционны. Кроме того при малых габаритах имеют сопротивление до нескольких десятков килоОм.

Полупроводниковые терморезисторы

Их также часто называют термисторами. По сравнению с медными и платиновыми они имеют более высокую чувствительность и отрицательный ТКС. Это говорит о том, что при увеличении температуры их сопротивление уменьшается. ТКС термисторов на порядок выше, чем у их медных и платиновых собратьев. При весьма малых габаритах сопротивление термисторов может достигать до 1 МОм, что исключает влияние на результат измерения сопротивления соединительных проводов.

Для измерения температуры наибольшее распространение получили полупроводниковые терморезисторы марки КМТ (на основе окислов марганца и кобальта), а также ММТ (окислы марганца и меди). Функция преобразования термисторов достаточно линейна в диапазоне температур -100 – 200°C, надежность полупроводниковых терморезисторов очень высока, характеристики стабильны в течение долгого времени.

Единственным недостатком является то, что в серийном производстве не удается с достаточной точностью воспроизвести необходимые характеристики. Один экземпляр значительно отличается от другого, примерно так же, как транзисторы: вроде бы из одной упаковки, а коэффициент усиления у всех разный, двух одинаковых из сотни не найдешь. Такой разброс параметров приводит к тому, что при замене термистора приходится заново производить регулировку аппаратуры.

Для питания термопреобразователей сопротивления чаще всего используется мостовая схема, в которой уравновешивание моста производится при помощи потенциометра. При изменении сопротивления терморезистора от воздействия температуры уравновесить мост можно только поворотом потенциометра.

Подобная схема с ручной регулировкой применяется в качестве демонстрационной в учебных лабораториях. Движок потенциометра имеет шкалу, проградуированную непосредственно в единицах температуры. В реальных измерительных схемах все, конечно, производится автоматически.

В следующей части статьи будет рассказано о применении термопар и механических термометров расширения – Датчики температуры. Термопары

Что такое терморезистор?

Начинающие радиолюбители задаются вопросом – термистор: что это такое? В двух словах, термистор (терморезистор) – радиодеталь, являющаяся по своей сути разновидностью резистора, конструкция которого выстроена на полупроводниках. Его сопротивление зависит от температуры, о чем говорит корень слова “терм” . Изготавливаются они на основе смешанных оксидов металлов. Существуют терморезисторы, которые работают при как при отрицательных, так и при положительных.

Работающие при минусовых температурах термисторы наиболее распространены в радиотехнике. Те, которые эксплуатируются в высоких температурах, применяются в ограниченном режиме. Они применяются в устройствах с жесткой системой контроля и сигнализацией. Формы термисторов бывают самые разнообразные, к тому же эти резисторы имеют очень миниатюрные размеры. Благодаря этому они нашли свое применение даже в медицине – они измеряют температуру внутри кровеносных сосудов.

В статье подробны рассмотрены подробно строение, особенности, сфера применения термисторов. Также в конце статьи приложен файл с детальной информацией по данной теме и видеоролик.

Как работает

Терморезистор — полупроводниковый элемент с меняющимися характеристиками (по сопротивлению) в зависимости от температуры. Изделие изобрели в 1930 году, а его создателем считается известный ученый Самуэль Рубен. С момента появления терморезистор получил широкое распространение в радиоэлектронике и успешно применяется во многих смежных сферах.

Деталь изготавливается с применением материалов, имеющих высокий температурный коэффициент (ТК). В основе лежат специальные полупроводники, по характеристикам превосходящие наиболее чистые металлы и их сплавы.

При получении главного резистивного элемента применяются оксиды некоторых металлов, галогениды и халькогениды. Для изготовления используется медь, никель, марганец, кобальт, германий, кремний и другие вещества. В процессе производства полупроводнику придется разная форма. В продаже можно найти терморезисторы в виде тонких трубок, крупных шайб, тонких пластинок или небольших круглых элементов. Некоторые детали имеют габариты, исчисляемые несколькими микронами.

Термистор, это резистор с большим значением температурного коэффициента сопротивления (ТКС). При изменении температуры токопроводящего материала термистора его электрическое сопротивление значительно изменяется. Термисторы могут быть как с положительным, так и с отрицательным ТКС. Термисторы с положительным ТКС называются PTC-термисторы или позисторы, с отрицательным – NTC-термисторы. При нагреве PTC-термистора (позистора) его сопротивление увеличивается. При нагреве NTC-термистора его сопротивление уменьшается.

Дальнейший нагрев на участке температур от Tref до максимально допустимого значения влечёт стремительное увеличение сопротивления. При этом разница сопротивлений может достигать нескольких порядков.

Зависимость сопротивления и температуры

Сопротивление идеальных полупроводников (количество дырок и носителей заряда одинаково) в зависимости от температуры может быть представлено следующей формулой

где A, b – постоянные, зависящие от свойств материала и геометрических размеров.

Однако, сложная композиция и неидеальное распределение зарядов в термисторном полупроводнике не позволяет напрямую использовать теоретическую зависимость и требует эмпирического подхода. Для NTC термисторов используется аппроксимационная зависимость Стейнхарта и Харта

1/T = a+b(lnR)+c(lnR) 3

где T – температура в К;

R – сопротивление в Ом;

a,b,c – константы термистора, определенные при градуировке в трех температурных точках, отстоящих друг от друга не менее, чем на 10 С.

Типичный 10 кОм-ый термистор имеет коэффициенты в диапазоне 0-100 С близкие к следующим значениям:

  • a = 1,03 10 -3
  • b = 2,93 10 -4
  • c = 1,57 10 -7

Дисковые термисторы могут быть взаимозаменяемыми, т.е. все датчики определенного типа будут иметь одну и ту же характеристику в пределах установленного производителем допуска. Лучший возможный допуск, как правило, ±0,05 С в диапазоне от 0 до 70 С. Бусинковые термисторы не взаимозаменяемы и требуют индивидуальной градуировки.

Градуировка термисторов может осуществляться в жидкостных термостатах. Необходимо герметизировать термисторы, погрузив их в стеклянные пробирки. Обычно для градуировки и вычисления констант проводится сличение термистора с образцовым платиновым термометром.

В диапазоне от 0 до 100 С сличение проводится в точках с интервалом 20 С. Погрешность интерполяции обычно не превышает 1 –5 мК при использовании модифицированного уравнения Стейнхарта и Харта:

1/T = a+b(lnR)+c(lnR) 2 + d(lnR) 3

Могут также использоваться реперные точки: тройная точка воды (0,01 С), точка плавления галлия (29,7646 С), точки фазовых переходов эвтектик и органических материалов.

Для градуировки нескольких термисторов они могут быть соединены последовательно, так чтобы через них проходил одинаковый ток. При градуировке и использовании термисторов важно учитывать эффект нагрева измерительным током. Для 10 кОм – ого термистора рекомендуется выбирать токи от 10 мкА (погрешность 0,1 мК), до 100 мкА (погрешность 10 мК).

Для начала определимся с таким типом радиодеталей, как термисторы (или, как их еще называют – терморезисторы). Они представляют собой полупроводниковый элемент, у которого меняется сопротивление в зависимости от температуры. Эта зависимость может быть:

  1. Прямой(чем больше температура, тем выше сопротивление) – это тип PTC (от англ. Positive Temperature Coefficient, то есть позитивный/положительный температурный коэффициент). Альтернативное название “позисторы”.
  2. Обратной(сопротивление увеличивается при уменьшении температуры и наоборот) – это тип NTC (от англ. Negative Temperature Coefficient, то есть негативный/отрицательный температурный коэффициент).

Терморезисторы часто разделят по диапазонам рабочих температур:

  • Низкотемпературные (ниже 170 К);
  • Среднетемпературные (170-510 К);
  • Высокотемпературные (свыше 510 К).

Обозначение термистора указано на рисунке ниже.

Главные параметры

При выборе детали важно ориентироваться на ее показатели и характеристики, меняющиеся в зависимости от типа, производителя, исходного материала и других показателей. При выборе изделия нужно выяснить главные параметры и определить, подходят они для решения поставленной задачи или нет.

При покупке нужно быть уверенным, что деталь подходит по размеру и поместится на плате (в схеме). Параметры измеряются в Омах и указываются применительно к текущей температуре в градусах Цельсия или Кельвинах. Если деталь рассчитана на работу при температурах от -100 до +200 градусов Цельсия, температурный режим для окружающей среды принимается на уровне 20-25 градусов Цельсия.

Параметр отражает тепловую инерционность. При расчете учитывается время, которое необходимо для изменения температуры термического резистора на 63% от разницы t детали и окружающего воздуха. В большинстве случаев этот параметр принимается равным 100 градусов Цельсия. ТКС (в % на один градус Цельсия).

Как правило, этот показатель прописывается для той же температуры t, что и холодное сопротивление. В такой ситуации при обозначении используются другие цифры — at. Мощность рассеивания Pmax (предельно допустимый параметр), Вт. По этому показателю можно судить о пределе, до достижения которого в полупроводнике не происходит необратимых изменений (параметры остаются прежними). При этом превышение температуры tmax при достижении Pmax исключено.

Температура tmax — максимально допустимый параметр, при котором характеристики терморезистора длительное время остаются без изменений (на установленном производителем уровне). Коэффициент энергетической чувствительности (измеряется в Вт/проценты*R). Обозначение — G. Показатель отражает мощность, которую необходимо рассеять на детали для снижения параметра R на один процент.

Конструкция и материалы

Большим преимуществом термисторов является разнообразие форм и миниатюрность. Основные конструктивные типы: бусинковые (0,1-1 мм), дисковые (2,5-18 мм), цилиндрические (3-40 мм), пленочное покрытие (толщина 0,2-1 мм). Выпускаются бусинковые термисторы диаметром до 0,07 мм с выводами толщиной 0,01 мм. Такие миниатюрные датчики позволяют измерять температуру внутри кровеносных сосудов или растительных клеток. Большинство термисторов – керамические полупроводники, изготовленные из гранулированных оксидов и нитридов металлов путем формирования сложной многофазной структуры с последующим спеканием (синтерация) на воздухе при 1100-1300 С.

Сложные двойные и тройные структуры оксидов переходных металлов, такие как (AB)3O4, (ABC)3O4 лежат в основе термисторов. Распространенной формулой является (Ni0.2Mn0.8)3O4. Наиболее стабильными термисторами при температурах ниже 250 С являются термисторы на основе смешанных оксидов мания и никеля или магния, никеля и кобальта, имеющие отрицательный ТКС. Удельная проводимость термистора r (25 C) зависит от химического состава и степени окисления. Дополнительное управление проводимостью осуществляется добавлением очень малых концентраций таких металлов как Li и Na.

При изготовлении бусинковых термисторов бусинки наносятся на две параллельные платиновые проволоки при температуре 1100 С, проволоки разрезаются на куски для получения необходимой конфигурации выводов. На бусинки наносится стеклянное покрытие, спекаемое при 300 С, либо бусинки герметизируются внутри миниатюрных стеклянных трубок.

Для получения металлических контактов в дисковых термисторах, на диск наносится металлическое покрытие Pt-Pd-Ag и выводные проводники соединяются с покрытием пайкой или прессованием. Номинальное сопротивление термисторов значительно выше, чем у металлических термометров сопротивления, оно обычно составляет 1, 2, 5, 10, 15 и 30 кОм. Поэтому может применяться двухпроводная схема включения.

Стабильность

Причины нестабильности термисторов следующие:

  • напряжения, возникающие в материале при термоциклировании и образование микротрещин;
  • структурные изменения в полупроводнике;
  • внешнее загрязнение (водой и др. веществами) и в результате химические реакции в порах и на поверхности полупроводника;
  • нарушение адгезии металлической пленки;
  • миграция примесей из металлических контактов в материал термистора.

Для получения стабильного состояния термисторы подвергают старению (до 500-700 дней). Как правило, во время старения наблюдается рост сопротивления. При длительном использовании термисторов, они уходят за пределы допуска, в большинстве случаев, термисторный термометр показывает температуру несколько ниже, чем значение, определенное по номинальной характеристике. Исследования показывают, что бусинковые термисторы могут проявлять очень высокую стабильность (дрейф до 3 мК за 100 дней при 60 С).

Дисковые термисторы менее стабильны (дрейф до 50 мК за 100 дней при 60 С). Термисторы представляют особый интерес для измерения низких температур благодаря своей относительной нечувствительности к магнитным полям. Некоторые типы термисторов могут применяться до температуры минус 100 С. Диапазон наилучшей стабильности термисторов – от 0 до 100 С. Основными преимуществами термисторов являются вибропрочность, малый размер, малая инерционность и невысокая цена.

Где используются

Терморезисторы активно применяются в разных сферах, тесно связанных с электроникой. Они особенно важных при реализации процессов, зависящих от правильности настройки температурного режима. Такой подход актуален для компьютерных технологий, устройств передачи информации, высокоточного промышленного оборудования и т. д.

Распространенный способ применения терморезисторов — ограничение токов, возникающих в процессе пуска аппаратов. При подаче напряжения к БП конденсатор быстро набирает емкость, что приводит к протеканию повышенного тока. Если не ограничить этот параметр, высок риск повреждения (пробоя) диодного моста.

Для защиты дорогостоящего узла применяется термистор — элемент, ограничивающий ток в случае резкого нагрева. После нормализации режима температура снижается до безопасного уровня, и сопротивление термистора возвращается до первоначального уровня.

Читайте также:  Реле сопротивления принцип работы
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: