 | Для справки. Остальные данные по сопротивлению проводов весового датчика весов CAS DB H можно посмотреть здесь. Допускается отклонение сопротивления от указанных +-1 Ом. Стандартное напряжение питания датчика – это +5В, но датчики обычно рассчитываются на 12В.
Способ №2 альтернативный.
Проверялся только на мостовой схеме, для других схем подключения может не подойти.
Находим контакты с максимальным сопротивлением, красный и белый провод имеют сопротивление больше всех , 422 Ом – это контакты для входного напряжения. Соответственно оставшиеся два синий и зеленый, есть контакты выходного сопротивления измерительного моста.
Мы намеренно опустили определение полярности входных и выходных групп контактов, что бы не перегружать материал информацией.
Определение полярности контактов для измерительного датчика весов (в разработке).
Тут все несколько неоднозначно, по крайней мере, для нас. Поэтому выкладываем только данные практических экспериментов. В качестве объекта измерения выбраны весы CAS DB 1H с тензодатчиком BC-150DB. Зная паспортные данные тензодатчика, имея 4 варианта подключения и зная правильную ориентацию на станине – снимем показания с выходного датчика. Правильное подключение по паспорту.
Вариант 1. (паспортное подключение)

Рис. Подключение тензодатчика по заводским параметрам.
- 0кг, на выходе 0мВ
- 20кг, на выходе 1мВ
- 40кг, на выходе 1,9мВ
Показания родного АЦП с весов
- 0 кг, показания АЦП, канал неизвестен 1,160
- 20 кг, показания АЦП, канал неизвестен 5,956
- 40 кг, показания АЦП, канал неизвестен 10,751
Давление на датчик снизу вверх – дает на выходе отрицательное напряжение.
Вариант 2. (перевернутое подключение)

Рис. Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.
- 0кг, на выходе 0мВ
- 20кг, на выходе 1мВ
- 40кг, на выходе 1,9мВ
Показания родного АЦП с весов
- 0 кг, показания АЦП, канал неизвестен 1,150
- 20 кг, показания АЦП, канал неизвестен 5,916
- 40 кг, показания АЦП, канал неизвестен 10,679
Давление на датчик снизу вверх – дает на выходе отрицательное напряжение.
Как видно из показаний, данные АЦП несколько отличаются. В рабочем режиме весы начинают «врать», то есть показывать меньший вес, но если весы откалибровать – показания становятся правильными и весы становятся полностью работоспособными.
Вывод.
Фактически подключение не влияет на работоспособность весов в целом, но показания при разных подключениях имеют небольшое отличие. Тензодатчик можно заставить работать в обоих подключениях. Два других варианта подключения рассматривать не будем, так как показания вольтметра на выходе получаются отрицательными, а соответственно нас не интересуют.
Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение
«Точность – вежливость королей!» В наше время актуальность этого средневекового французского афоризма только растет. Для проведения точных измерительных вычислений на производстве и в быту все шире используются приборы на основе тензометрических датчиков.
Что такое тензометрия и для чего нужны тензодатчики

Тензометрия (от лат. tensus — напряжённый) – это способ и методика измерения напряжённо-деформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя напрямую измерить механическое напряжение, поэтому задача состоит в измерении деформации объекта и вычислении напряжения при помощи специальных методик, учитывающих физические свойства материала.
В основе работы тензодатчиков лежит тензоэффект — это свойство твёрдых материалов изменять своё сопротивление при различных деформациях. Тензометрические датчики представляют собой устройства, которые измеряют упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот процесс происходит при изменении сопротивления проводника датчика при его растяжении и сжатии. Они являются основным элементом в приборах по измерению деформации твёрдых тел (например, деталей машин, конструкций, зданий).
Устройство и принцип работы
Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.

В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.
Рассмотрим более предметно виды и типы современных тензометрических датчиков.
Датчики крутящего момента
Датчики крутящего момента предназначены для измерения крутящего момента на вращающихся частях таких систем, как коленвал двигателя или рулевой колонки. Тензодатчики крутящего момента могут определять как статический, так и динамический момент контактным либо бесконтакным (телеметрическим) способом.

Тензодатчики балочного, консольного и кромочного типов
Эти типы датчиков изготавливают обычно на основе параллелограммной конструкции со встроенным элементом изгиба для высокой чувствительности и линейности измерений. Тензорезисторы в них закрепляются на чувствительных участках упругого элемента датчика и соединяются по схеме полного моста.

Конструктивно балочный тензодатчик имеет специальные отверстия для неравномерного распределения нагрузки и выявления деформаций сжатия и растяжения. Для получения максимального эффекта тензорезисторы по специальным меткам строго ориентируют на поверхности балки в ее самом тонком месте. Высокоточные и надежные датчики этого типа используют для создания многодатчиковых измерительных систем в платформенных или бункерных весах. Нашли они свое применение и в весовых дозаторах, фасовщиках сыпучих и жидких продуктов, измерителях натяжения тросов и других измерителях силовых нагрузок.
Тензодатчики силы растяжения и сжатия
Тензодатчики силы растяжения и сжатия, как правило, имеют S-образную форму, изготавливаются из алюминия и легированной нержавеющей стали. Предназначены для бункерных весов и дозаторов с пределом измерения от 0,2 до 20 тонн. S-образные тензодатчики силы растяжения и сжатия могут использоваться в станках по производству кабелей, тканей и волокон для контроля силы натяжения этих материалов.

Тензорезисторы проволочные и фольговые
Проволочные тензорезисторы делают в виде спирали из проволоки малого диаметра и крепят на упругом элементе или исследуемой детали с помощью клея. Их отличает:
- простота изготовления;
- линейная зависимость от деформации;
- малые размеры и цена.

Из недостатков отмечают низкую чувствительность, влияние температуры и влажности среды на погрешность измерения, возможность применения только в сфере упругих деформаций.
Фольговые тензорезисторы в настоящее время являются наиболее распространенным типом тензорезисторов из-за их высоких метрологических качеств и технологичности производства. Это стало доступным благодаря фотолитографической технологии их изготовления. Передовая технология позволяет получать одиночные тензорезисторы с базой от 0,3 мм, специализированные тензометрические розетки и цепочки тензорезисторов с широким рабочим температурным диапазоном от –240 до +1100 ºС в зависимости от свойств материалов измерительной решетки.

Преимущества и недостатки тензодатчиков
Широкое применение тензодатчики получили благодаря своим свойствам:
- возможности монолитного соединения датчика деформации с исследуемой деталью;
- малой толщине измерительного элемента, что обеспечивает высокую точность измерения с погрешностью 1-3 %;
- удобстве крепления, как на плоских, так и на криволинейных поверхностях;
- возможности измерения динамических деформаций, меняющихся с частотой до 50000 Гц;
- возможности проведения измерений в сложных условиях окружающей среды в температурном интервале от -240 до +1100˚С;
- возможности измерений параметров одновременно во многих точках деталей;
- возможности измерения деформации объектов, расположенных на больших расстояниях от тензометрических систем;
- возможностью измерения деформаций в движущихся (крутящихся) деталях.
Из недостатков следует отметить:
- влияние метеоусловий (температуры и влажности) на чувствительность датчиков;
- незначительные изменения сопротивления измерительных элементов (около 1%) требует применение усилителей сигналов.
- при работе тензодатчиков в условиях высокотемпературной или агрессивной среды необходимы специальные меры их защиты.
Основные схемы подключения

Рассмотрим это на примере подключения тензометрических датчиков к бытовым или промышленным весам. Стандартный тензодатчик для весов имеет четыре разноцветных провода: два входа – питание (+Ex, -Ex), два других – измерительные выходы (+Sig, -Sig). Встречаются также варианты с пятью проводами, где дополнительный провод служит в качестве экрана для всех остальных. Суть работы весового измерительного датчика балочного типа довольно проста. На входы подается питание, а с выходов снимается напряжение. Величина напряжения зависит от приложенной нагрузки на измерительный датчик.
Если длина проводов от весового тензодатчика до блока АЦП значительна, то сопротивление самих проводов будет влиять на показание весов. В этом случае целесообразно добавить цепь обратной связи, которая компенсирует падение напряжения путем корректировки погрешности от сопротивления проводов, вносимую в измерительную цепь. В этом случае схема подключения будет иметь три пары проводов: питания, измерения и компенсации потерь.

Примеры использования тензометрических датчиков
- элемент конструкции весов.
- измерение усилий деформации при обработке металлов давлением на штамповочных прессах и прокатных станах.
- мониторинг напряженно-деформационных состояний строительных конструкций и сооружений при их возведении и эксплуатации.
- высокотемпературные датчики из жаропрочной легированной стали для металлургических предприятий.
- с упругим элементом из нержавеющей стали для измерений в химически агрессивной среде.
- для измерения давления в нефте и газопроводах.
Простота, удобство и технологичность тензодатчиков – основные факторы для дальнейшего активного их внедрения, как в метрологические процессы, так и использования в повседневной жизни в качестве измерительных элементов бытовой техники.
Что такое тензодатчик и как он работает
Виды и сфера применения
Для начала разберемся в принципе действия тензометрических датчиков. При воздействии на тело внешних сил оно деформируется, противодействует приложенной силе. За счёт деформаций корпуса датчика происходит воздействие на измерительный элемент тензодатчика. В результате устройство выдаёт электрический сигнал, считывая который система обработки выдаёт результат измерений. Но для чего нужен такой тип устройств?
Тензометрические датчики используются для:
- Измерения веса. При этом в зависимости от конструкции измерительного узла могут использоваться на сжатие или на растяжение. Соответственно их назначение – измерение веса на платформах (например, весы в магазинах) или на подвесе (краны и прочее).
- Измерения давления. Например, в трубопроводах газов и жидких веществ.
- Измерения крутящего момента (на двигателях автомобилей или станков).
- Определения ускорения.
- Контроля перемещения.
По типу измерительного элемента и принципа работы тензодатчики делятся на:
- Тензорезистивные.
- Пьезоэлектрические.
- Оптико-поляризационные.
- Волоконно-оптические.
- Пьезорезистивные.
Конструктивные особенности тензодатчика определяет то где он применяется, ведь конструкция определяет наличие монтажных отверстий и векторов возможного приложения сил, соответственно и самого процесса измерения. По форме также тензометрические датчики бывают разных типов:
- Консольные. Назначение таких устройств – измерение количества веществ в дозаторах, конвейерных, платформенных, бункерных и напольных весах.
- Цилиндрические. Применяются для взвешивания вагонов, автомобилей, баков и емкостей – там, где нужно измерять большие веса.
- S-образные, срабатывают на растяжение, подходят для измерения веса, поднимаемого краном и в других подобных конструкциях.

На практике тензометрические датчики могут производиться в совершенно разнообразном исполнении.
Устройство и принцип действия
Для измерения давления или веса используется тензодатчики, все они выдают электрический цифровой или аналоговый электрический сигнал при изменении формы чувствительного элемента. Но из чего они состоят?
Основа или корпусы бывают разных типов, от этого зависит, куда вы сможете установить датчик. А также то, в каком направлении он работает – на сжатие, растяжение или на изгиб.

В корпусе тензодатчика кроме чувствительного элемента могут находиться и дополнительные блоки, например, АЦП, формирователи питания и пр. Если тензометрический датчик цифровой, то и блок для преобразования аналогового сигнала (АЦП). Рассмотрим принцип работы чувствительного элемента тензометрического датчика на примере тензорезистивного компонента – они нашли наиболее широкое применение.
Тензометрический датчик резистивного типа представляет собой гибкую плёнку или подложку, на которую нанесён резистивный слой. Если это плёночный датчик – тонкое напыление или фольга, если проволочный — на гибкой подложке размещена проволока. Напыление или проволока укладываются в извилистую линию.

При механическом воздействии на подложку он изгибается, в результате чего плёнка, фольга или проволока растягивается. Соответственно в натянутом состоянии изменяется (уменьшается) её площадь поперечного сечения и сопротивление увеличивается. При снижении давления подложка возвращается в исходное положение, резистивный слой тоже, а его сопротивление начинает уменьшаться и возвращаться к норме.
Пьезоэлектрические чувствительные органы работают напротив. При давлении на пьезокристалл возникает ЭДС, тогда как у пьезорезистивных датчиков из тонких плёнок полупроводников также изменяется сопротивление.

Ещё можно встретить и емкостные датчики – это приборы, принцип работы которых заключается в измерении ёмкости между гибкими пластинами. А также электромагнитные устройства, в которых под воздействием на магнитопровод изменяются характеристики контура.
Схема подключения
Как работает тензодатчик мы разобрались. Теперь следует ознакомиться со схемой подключения. Блок схема устройства, которое считывает сигнал, изображена на рисунке ниже. На ней вы видите один из вариантов усиления и преобразования сигнала с датчика.

Если рассмотреть тензорезистивный датчик, то реально он представляет собой мост из резисторов, включённый следующим образом. Такая схема включения называется «Мост Уинстона» или измерительный мост.

Для его работы недостаточно подключить лишь сигнальные провода, нужны еще и провода питания. В некоторых сложных системах могут подключаться еще и провода для термостабилизации или других функций.
На видео подробно рассказывается, что собой представляют тензометрические датчики и как они работают:
Современные тензометрические датчики в зависимости от своего назначения могут использоваться в установках для измерения от долей грамм до сотен тон. Соответственно для каждого диапазона весов подбираются тензодатчки определённой конструкции и типа чувствительного элемента. Кроме измеряемых весов немаловажную роль в выборе контрольно-измерительной аппаратуры играет и условия, в которых они будт работать, а также требуемый класс точности.
Материалы по теме:
Особенности и принцип действия тензометрических датчиков
Измерение напряжений и усилий в действующих узлах и конструкциях оборудования считается одной из наиболее сложных задач. Между тем в процессе эксплуатации техника подвергается разным видам нагрузок, которые определяют долговечность и надежность оборудования. Решение поставленных задач возможно с помощью тензометрических датчиков. Установка подобных устройств целесообразна тогда, когда в дополнение к производственным факторам добавляются остаточные напряжения, постепенно накапливаемые в ходе работы.
Описание и назначение
При измерении деформаций, напряжений и усилий при помощи тензометрических датчиков используют изменение значений омического сопротивления материала, которое вызывается упругими деформациями металлической проволоки или полупроводников стержневого исполнения. Изменение сопротивления датчика передаётся при помощи кабеля или бесконтактным путем на измерительный мост. Там оно преобразуется в усиленные электрические сигналы, которые и фиксируются прибором.

Все типы тензометрических датчиков (или, иначе – тензорезисторов) используют зависимость между напряжениями и деформациями – закон Гука – который справедлив в области упругих деформаций. Согласно закону Гука изменение электросопротивления, отнесённое к исходному значению данного параметра до деформации, пропорционально изменению удлинения, отнесённому к первоначальной длине измерительного элемента. Применяя коэффициент пропорциональности, который зависит от диапазона измеряемых параметров и материала устройства, устанавливают зависимость между нагрузкой на датчик и его удлинением:
R – исходное значение электрического сопротивления;
ΔR – изменение значения электрического сопротивления в процессе деформации;
k – коэффициент пропорциональности;
Δl – изменение длины при деформировании;
l – исходная длина измерительного элемента до приложения к нему эксплуатационной нагрузки.
Указанный тип устройств используется в весоизмерительной технике, поскольку относится к тензорным, определяющим усилия и внешние нагрузки.

Применяемость рассматриваемых измерительных элементов определяется материалом, из которого выполнен датчик. Чаще всего исходным материалом служит сплав константан, состоящий из 40% никеля и 60% меди. Для константана k ≈ 2; таким же порядком значений (1.5…3,5) обладают и другие сплавы постоянного электросопротивления.
Датчики полупроводникового типа имеют более высокие значения коэффициента пропорциональности. В зависимости от материала полупроводника (кремний или германий), а также состава легирующих добавок значения коэффициента достигают 50…70. В связи с этим полупроводниковые тензометрические датчики более чувствительны, и их применяют для оценки малых удлинений. Вместе с тем полупроводниковые датчики характеризуются повышенными отклонениями своего удлинения в диапазонах 1,5…9 % относительного удлинения. Для проволочных датчиков этот показатель не превышает 0,5%.

Конструкции тензометрических датчиков проволочного типа разрабатываются с учетом следующих ограничений:
- С целью получения достаточной точности измерений величина сопротивления проволочного элемента должна находиться в пределах 100…1000 Ом;
- Диаметр проволоки целесообразно иметь в диапазоне 0,01…0,03 мм;
- Длина проволочного элемента не должна превышать 250…300 мм.
В некоторых случаях приведенные ограничения не позволяют устанавливать тензометрические датчики в виде проволок, поэтому измерительные устройства изготавливают из фольги или плоских измерительных решеток. Для предохранения от повреждений, которые могут возникнуть при транспортировке или сборке таких датчиков, для их крепления в напольном исполнении применяют подложку из бумаги или тонкого пластика.
Чтобы обеспечить электрический контакт с измерительной решеткой, на подложке размещают проволочные выводы, которые затем присоединяются к датчику при помощи пайки.

Виды тензодатчиков, включающих в себя активный измерительный элемент, контактные выводы и подложку:
- Плоский проволочный.
- Фольговый.
- Полупроводниковый, с одним или двумя стержнями.
- Трубчатый.
Краткая характеристика наиболее распространённых исполнений тензодатчиков приводится далее.
- Консольные. Предназначены для измерения крутящих и изгибающих моментов, устанавливаются в метах наибольшего прогиба конструкций.
- Цилиндрические. Наименее компактны, зато позволяют определять значительные напряжения, приближающиеся по своим значениям к пределу текучести лимитирующего материала.
- S-образные. Дают возможность оценивать трехмерные деформации при объемном напряженно-деформированном состоянии. Чаще других нуждаются в поверке.

Устройство и принцип работы
По типу воздействия на исполнительные элементы конструкции различают тактильные, резистивные, пьезорезонансные, пьезоэлектрические, магнитные и емкостные датчики.
Тактильные
Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.
Резистивные
Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.
Пьезорезонансные
Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.
Пьезоэлектрические
По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.
Магнитные
Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.
Емкостные
Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.
Характеристика
Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций. При этом коэффициент пропорциональности k должен иметь большие значения. Для компактных устройств со значительной чувствительностью приходится применять материалы, обладающие высоким удельным сопротивлением. При этом температурная зависимость удельного сопротивления при изменении внешних условий должна быть незначительной, а лучше и вовсе отсутствовать.

Условия оптимального использования тензорезисторов:
- Малое различие между коэффициентами теплового расширения материала конструкции (или узла) и измерительной проволоки устройства.
- Нечувствительность к термическим напряжениям, которые возникают при соединении измерительного элемента с контролируемой частью оборудования или конструкции (для такого присоединения чаще всего используют пайку).
- Хорошая обрабатываемость паяных соединений, которая не изменяет эксплуатационные параметры оборудования.
- Надежность соединения, учитывающая возможные динамические удары и перемещения.
На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.

Схемы подключения
Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.
Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.

Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:
- Высокое сопротивление ползучести.
- Отсутствие гистерезиса.
- Влагостойкость.
- Адгезионная способность.
- Температуростойкость.
Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.

Сферы применения
Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.
Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.
Основным преимуществом тонкопленочных преобразователей является устранение нестабильности, вызванной клеем.
Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.
Часто применяемые условия для использования тензодатчиков перечислены далее.
Измерение веса
Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.
Измерение давления
Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.
Измерение крутящего момента
Применяется для испытательного оборудования станций технического обслуживания автомобильного транспорта.
Определение ускорения
Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.
Контроль перемещения
Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.
Плюсы и минусы
Тензорные датчики компактны, удобны при установке, практически не ограничивают работоспособность конструкции, где они установлены. Вместе с тем они часто подвержены эффекту старения, чувствительны к температурным напряжениям и иногда характеризуются повышенным разбросом получаемых данных. Тонкоплёночные тензорезисторы, кроме того, характеризуются низким уровнем выходного сигнала, ограниченными частотными характеристиками и влиянием высокого напряжения на точность получаемых результатов. Чаще других типов применяются в качестве весовых, а также для определения комплекса силовых факторов, постоянно изменяющихся в процессе работы оборудования или конструкции.
Преимущества тензометрических технологий:
- Быстрое время отклика;
- Простота компенсации температурных эффектов;
- Малая чувствительность к динамическим воздействиям.
- Невозможность обеспечить более низкие диапазоны измерений;
- Снижение точности показаний при вибрациях;
- Необходимость точного совмещения с окружающей средой;
- Сложность первоначальной настройки.
Выпуск современных тензометрических датчиков регламентируется требованиями ГОСТ 21616-91.
Схема подключения тензодатчиков к индикатору веса

Подключение тензодатчика к индикатору веса, на первый взгляд кажется простой задачей, но неправильное соединение может вызвать уменьшение точности измерения или некорректную работу весовой системы. Тензодатчики различных производителей имеют либо 4-х проводный, либо 6-ти проводный кабель для подключения к весовому индикатору.
Ниже приведены схемы подключения для этих двух типов тензодатчиков:

Большинство промышленных весовых систем используют несколько тензодатчиков, в этом случае они должны быть подключены параллельно. Обычно эту связь делают не простой скруткой, а с применением специализированных соединительных коробок. Дополнительно, некоторые модели таких коробок позволяют «подогнать» сопротивление датчиков друг под друга, т.е. сбалансировать систему из множества датчиков.
Тензодатчики поставляются с кабелем определенной длины. При удлинении соединительного кабеля следует учитывать, что это может привести к падению точности измерения. Также при изменении длины кабеля следует производить перекалибровку весового индикатора, к которому подключен тензодатчик.
Как подключить тензодатчик к весовому терминалу
Большинство тензодатчиков поставляется с документацией, в которой указывается цветовая маркировка идущих от него проводов и их назначение. 4-х проводные тензодатчики, судя по названию, имею 4 соединительных линии:
+EXC – +Питание
-EXC – -Питание
+SIG – +Сигнал
-SIG – -Сигнал
Т.е. две линии это цепи питания и две это выходной сигнал датчика. Для корректной работы необходимо подать питающее напряжение на линии +EXC и –EXC, в соответствии с техническими характеристиками датчика, обычно оно составляет от 5 до 12 вольт. После подачи питания на сигнальных линиях SIG меняется напряжение, и это изменение необходимо фиксировать весоизмерительным прибором.

На рисунке приведена схема подключения тензодатчика четырёхпроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.
Некоторые тензодатчики могут иметь не четыре, а шесть соединительных проводов. Две дополнительные линии называются – линиями обратной связи, и имеют маркировку SENSE. Эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах. Как видно из рисунка выше, в случае подключения четырехпроводного тензометрического датчика, функция компенсации потерь не используется, и необходимо использовать перемычки для подключения тензодатчика к прибору.
Четырехпроводные тензодатчики датчики лучше использовать на короткие расстояния передачи сигнала. Шестипроводные датчики, благодаря линиям обратной связи, обладают большей точность и их можно использовать для больших расстояний, т.к. эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах.

На рисунке приведена схема подключения тензодатчика шестипроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.
Определение маркировки проводов тензодатчика без документации
Если у вас отсутствует описание тензодатчика, для определения маркировки проводов можно использовать обыкновенный мультиметр, при условии, что датчик аналоговый, а не цифровой.
- Измерьте сопротивление между всеми проводами. В 4-проводном тензодатчике имеется шесть комбинаций проводов, следовательно, вы получите 6 значений сопротивлений, одна пара проводов будет иметь сопротивление больше, чем все остальные.
- Пара с самым большим сопротивлением – это линия питания, оставшаяся пара проводов – линия сигнала.
- Подключите линию питания к весоизмерительному прибору, или подайте напряжение.
- Измерьте напряжение на линии сигнала, определив тем самым полярность подключения.
Подключение нескольких тензодатчиков при помощи соединительной (балансировочной) коробки
Как подключать несколько тензодатчиков при помощи балансировочной коробки можно посмотреть на видео
Заземление и экранирование при подключении тензодатчика.
Организация заземления и экранирования важный вопрос успешного создания весовой системы с использованием тензодатчиков. Надёжное решение данной задачи – ключ к правильной работе тензометрического датчика, генерирующего слаботочные сигналы. Кабели тензодатчиков должны иметь экранирующую оплетку, которая, при правильном подключении, обеспечивает защиту от электростатических и других помех.
Основное правило, которое нельзя нарушать: необходимо избегать «земляных» петель, т. е. заземлять устройства нужно в ОДНОЙ общей точке. Петли могут возникать если экран кабеля подключать к заземляющему контуру с двух концов. Поэтому, если корпус датчика надёжно заземлён и одновременно соединён с экраном – этого достаточно, в противном случае – соединить экран с заземлением только с любого ОДНОГО конца, например, в электрощите, где установлен прибор отдельным жёлто-зелёным проводом. Под «заземлением» мы понимаем защитное заземление, желто-зелёный провод. Использовать «нейтраль» в качестве «земли» очень нежелательно.
Если датчики соединяются параллельно, то необходимо не забывать соединять друг с другом и экранные оплётки кабелей через соответствующий контакт клеммы в соединительной коробке, и тут же их заземлять вместе с корпусом коробки. Общий кабель, идущий от соединительной коробки к прибору, соединять с заземлением также с ОДНОЙ стороны, как описано выше, не допуская образования «земляной» петли, желательно возле входа в измерительный прибор, то есть заземлять со стороны приёмника.
На кабель датчика, прямо поверх изоляции, на расстоянии 4-5 см от клеммы измерительного прибора, желательно защёлкнуть ферритовый фильтр для блокировки возникающих в цеху разнообразных помех по «земле». Такие фильтры производятся под кабели разных диаметров. Фильтры желательно защёлкнуть и на других длинных линиях, например RS-485, на приёмном и передающем устройстве. Если индуктивности одного фильтра недостаточно для надёжного уменьшения уровня помехи, такие фильтры можно защёлкивать последовательно на небольшом расстоянии друг от друга, наращивая тем самым индуктивность до необходимого уровня.