Автотрансформаторы – устройство, приницип действия, достоинства и недостатки
Назначение, устройство и принцип действия автотрансформаторов
В некоторых случаях бывает необходимо изменять напряжение в небольших пределах. Это проще всего сделать не двухобмоточными трансформаторами, а однообмоточными, называемыми автотрансформаторами. Если коэфициент трансформации мало отличается от единицы, то разница между величиной токов в первичной и во вторичной обмотках будет невелика. Что же произойдет, если объединить обе обмотки? Получится схема автотрансформатора (рис. 1).
Автотрансформаторы относят к трансформаторам специального назначения. Автотрансформаторы отличаются от трансформаторов тем, что у них обмотка низшего напряжения является частью обмотки высшего напряжения, т. е. цепи этих обмоток имеют не только магнитную, но и гальваническую связь.
В зависимости от включения обмоток автотрансформатора можно получить повышение или понижение напряжения.
Рис. 1 Схемы однофазных автотрансформаторов: а – понижающего, б – повышающего.
Если присоединить источник переменного напряжения к точкам А и Х, то в сердечнике возникнет переменный магнитный поток. В каждом из витков обмотки будет индуктироваться ЭДС одной и той же величины. Очевидно, между точками а и Х возникнет ЭДС, равная ЭДС одного витка, умноженной на число витков, заключенных между точками а и Х.
Если присоединить к обмотке в точках a и Х какую-нибудь нагрузку, то вторичный ток I2 будет проходить по части обмотки и именно между точками a и Х. Но так как по этим же виткам проходит и первичный ток I1 , то оба тока геометрически сложатся, и по участку a Х будет протекать очень небольшой по величине ток, определяемый разностью этих токов. Это позволяет часть обмотки сделать из провода малого сечения, чтобы сэкономить медь. Если принять во внимание, что этот участок составляет большую часть всех витков, то и экономия меди получается весьма ощутимой.
Таким образом, автотрансформаторы целесообразно использовать для незначительного понижения или повышения напряжения, когда в части обмотки, являющейся общей для обеих цепей автотрансформатора, устанавливается уменьшенный ток что позволяет выполнить ее более тонким проводом и сэкономить цветной металл. Одновременно с этим уменьшается расход стали на изготовление магнитопровода, сечение которого получается меньше, чем у трансформатора.
В электромагнитных преобразователях энергии – трансформаторах – передача энергии из одной обмотки в другую осуществляется магнитным полем, энергия которого сосредоточена в магнитопроводе. В автотрансформаторах передача энергии осуществляется как магнитным полем, так и за счет электрической связи между первичной и вторичной обмотками.
Трансформатор и автотрансформатор
Автотрансформаторы успешно конкурируют с двухобмоточными трансформаторами, когда их коэффициент трансформации – мало отличается от единицы и но более 1,5 – 2. При коэффициенте трансформации свыше 3 автотрансформаторы себя не оправдывают.
В конструктивном отношении автотрансформаторы практически не отличаются от трансформаторов. На стержнях магнитопровода располагаются две обмотки. Выводы берутся от двух обмоток и общей точки. Большинство деталей автотрансформатора в конструктивном отношении не отличаются от деталей трансформатора.
Лабораторные автотрансформаторы (ЛАТРы)
Автотрансформаторы применяются также в низковольтных сетях в качестве лабораторных регуляторов напряжения небольшой мощности (ЛАТР). В таких автотрансформаторах регулирование напряжения осуществляется при перемещении скользящего контакта по виткам обмотки.
Лабораторные регулируемые однофазные автотрансформаторы состоят из кольцеобразного ферромагнитного магнитопровода, обмотанного одним слоем изолированного медного провода (рис. 2).
От этой обмотки сделано несколько постоянных ответвлений, что позволяет использовать эти устройства как понижающие или повышающие автотрансформаторы с определенным постоянным коэффициентом трансформации. Кроме того, на поверхности обмотки, очищенной от изоляции, имеется узкая дорожка, по которой перемещают щеточный или роликовый контакт для получения плавно регулируемого вторичного напряжения в пределах от нуля до 250 В.
При замыкании соседних витков в ЛАТР не происходит витковых замыканий, так как токи сети и нагрузки в совмещенной обмотке автотрансформатора близки друг к другу и направлены встречно.
Лабораторные автотрансформаторы изготовляют номинальной мощностью 0,5; 1; 2; 5; 7,5 кВА.
Схема лабораторного регулируемого однофазного автотрансформатора
Лабораторный автотрансформатор (ЛАТР)
Наряду с однофазными двухобмоточными автотрансформаторами часто применяются трехфазные двухобмоточные и трехфазные трехобмоточные автотрансформаторы.
В трехфазных автотрансформаторах фазы обычно соединяют звездой с выведенной нейтральной точкой (рис. 3). При необходимости понижения напряжения электрическую энергию подводят к зажимам А, В, С и отводят от зажимов а, b , с, а при повышении напряжения – наоборот. Их применяют в качестве устройств для снижения напряжения при пуске мощных двигателей, а также для ступенчатого регулирования напряжения на зажимах нагревательных элементов электрических печей.
Рис. 3. Схема трехфазного автотрансформатора с соединением фаз обмотки звездой с выведенной нейтральной точкой
Трехфазные высоковольтные трехобмоточные трансформаторы используются также в высоковольтных электрических сетях.
Трехфазные автотрансформаторы, как правило, на стороне высшего напряжения соединяются в звезду с нулевым проводом. Соединение в звезду обеспечивает снижение напряжения, на которое рассчитывается изоляция автотрансформатора.
Применение автотрансформаторов улучшает КПД энергосистем, обеспечивает снижение стоимости передачи энергии, но приводит к увеличению токов короткого замыкания.
Недостатком автотрансформатора является необходимость выполнения изоляции обеих обмоток на большее напряжение, так как обмотки имеют электрическую связь.
Существенный недостаток автотрансформаторов – гальваническая связь между первичной и вторичной цепями, что не позволяет использовать их в качестве силовых в сетях 6 – 10 кВ при понижении напряжения до 0,38 кВ, так как напряжение 380 В подводится к оборудованию, на котором работают люди.
При авариях из-за наличия электрической связи между обмотками в автотрансформаторе высшее напряжение может оказаться приложенным к обмотке низшего. При этом все части эксплуатируемой установки окажутся соединенными с высоковольтной частью, что не допускается по условиям безопасности обслуживания и из-за возможности пробоя изоляции токопроводящих частей присоединенного электрооборудования.
Автотрансформаторы | Устройство и принцип действия
Автотрансформатор является одной из разновидностей обычного трансформатора напряжения, отличаясь от него своей конструкцией, которая даёт автотрансформаторам ряд весомых преимуществ, делая их просто незаменимыми, например, при производстве стабилизаторов напряжения.
Но давайте обо всё по порядку, в этой статье я подробно расскажу о том, что такое автотрансформатор, зачем он нужен, какая у него конструкция и многое другое.
Автотрансформатор – это устройство для изменения напряжения переменного тока при сохранении его частоты, основанное на эффекте электромагнитной индукции, которое имеет одну общую обмотку на магнитопроводе и не менее трёх выводов от неё.
Если простыми словами, то автотрансформаторы – это разновидность обычных трансформаторов напряжения, в которых есть всего одна обмотка, часть витков которой выполняют функцию первичной обмотки, а часть вторичной.
Для лучшего понимания, давайте рассмотрим устройство наиболее распространенного типа автотрансформаторов.
Устройство автотрансформатора
Чаще всего стандартный автотрансформатор представляет собой тороидальный магнитопровод – сердечник, сделанный из электротехнической стали в виде кольца, на который намотана медная проволока – называемая обмоткой.
Кроме того, чтобы эта конструкция служила именно автотрансформатором, у неё есть дополнительная «отпайка» – отвод от этой обмотки, всего контактов получается, как минимум три.
Устройство автотрансформатора достаточно наглядно показано на изображении ниже:
В данном примере, вы можете видеть автотрансформатор, к крайним контактам которого подключается источник напряжения переменного тока, к A – фаза , к X – ноль . Все витки проволоки между этими точками считаются первичной обмоткой.
Нагрузка, какой-нибудь электроприбор, которому для работы требуется меньшее напряжение, чем поступает из сети, подключается к выводам a2 и X – витки между этими контактами – это уже вторичная обмотка.
Как видите, у автотрансформатора есть всего одна обмотка, но при этом напряжение, если замерять в различных точках подключения, будет разным, почему оно меняется и как определить насколько (коэффициент трансформации) мы рассмотрим ниже.
Обозначение автотрансформатора на схемах
Кстати, вы довольно легко на любой схеме определите автотрансформатор и отличите его от обычного трансформатора, чаще всего он обозначается вот так:
Как видите, схематически у автотрансформатора показаны все его основные элементы: прямая линия – это стальной сердечник, с одной стороны которого расположена единственная обмотка – в виде волнистой линии, от которой идёт несколько отводов.
Перепутать с обычным трансформатором не получится, ведь у него на схеме будет как минимум две обмотки по сторонам от сердечника.
Более подробно о принципиальных различиях автотрансформатора и обычного трансформатора напряжения, я расскажу во второй части этой статьи.
Принцип работы автотрансформатора
А сейчас, для лучшего понимания основного принципа работы автотрансформаторов, рассмотрим процессы, которые в них происходят.
В качестве примера, мы возьмем автотрансформатор, который может как повышать напряжение на выходе, так и уменьшать его, относительно начального. Общее количество витков медного провода у него, для удобства расчетов, равно 20, выглядит он следующим образом:
Как видите, у такой модели, есть уже четыре точки подключения к общей обмотке: A1, a2, a3 и X .
К контактам A1 и N – подключается источник переменного электрического тока, например, питание стандартной городской электросети, с напряжением(U1), в нашем случае это стандартные 220В. Всего между этими точками 18 витков медной проволоки, этот участок спирали обозначен как W1, он считается первичной обмоткой автотрансформатора.
Что происходит при подаче напряжения на автотрансформатор
При протекании переменного тока по обмотке, в сердечнике (магнитопроводе) автотрансформатора, образуется переменный магнитный поток, который циркулирует по замкнутому магнитному сердечнику, пронизывая ВСЕ витки обмотки.
Проще говоря, при подключении тока к первичной обмотке – в нашем примере к 18 виткам, магнитный поток протекая по сердечнику пронизывает всю обмотку, все 20 витков. Напряжение же на первичной обмотке (в точках подключения A1 и X ) остаётся 220В или, если распределить на каждый виток 220/18 = 12.222… Вольта на каждый.
Теперь, чтобы узнать какое напряжение образуется на всех 20 витках, к точкам a2 и X , подключим нагрузку, какой-нибудь электроприбор – это будет вторичная обмотка автотрансформатора. На схеме условно обозначим нагрузку, некий электроприбор подключеный к этой обмотке, напряжение U2, а число витков между контактами W2 = 20.
Зависимость между обмотками у автотрансформатора, выражается следующей формулой:
U1/w1 = U2/w2 , где U1 напряжение на первой обмотке, U2 напряжение на второй обмотке, w1 число витков первой обмотки, w2 число витков второй обмотки.
Из этой формулы следует что напряжение на вторичной обмотке изменяется относительно напряжения первичной обмотки, пропорционально разнице витков. В нашем примере на один виток первичной обмотки приходится 12.22.. Вольт, у вторичной же обмотки витков больше на 2, соответственно общее напряжение обмотки выше на 24.44..Вольта.
Это доказывает нехитрый расcчет:
220 Вольт/18 Витков=U2/20 Витков,
U2 = 220*20/18 = 244.44В
Автотрансформатор, у которого на вторичной обмотке напряжение увеличивается называется повышающий.
Зная зависимость между обмотками, мы можем вычислить коэффициент трансформации, величину, которая позволяет легко определять, изменение входящих параметров (напряжения, сопротивления, силы тока) на вторичной обмотке.
Коэффициент трансформации вычисляется по следующей формуле: U1/U2=w1/w2
В нашем случае получается 220/244,44=18/20=0,9
Теперь давайте посмотрим, как изменится напряжения на оставшихся контактах.
Подключаем нагрузку к контактам a3 и X нашего автотрансформатора, число витков w3 у этой обмотки равно 16, напряжение обозначим как U3.
Следуя той же формуле, рассчитываем напряжение:
U1/w1 = U3/w3 = 220/18=U3/16, от сюда следует, что U3 =220*16/18 = 195,55.. Вольт, а коэффициент трансформации U1/U3=w1/w3=220/195,55=18/16=1,125 , эта обмотка понижающая.
Автотрансформатор, у которого на вторичной обмотке напряжение уменьшается называется понижающий.
Теперь, зная коэффициенты трансформации на всех выводах автотрансформатора мы легко сможем определять, например, какое будет напряжение на вторичной обмотке, если изменится напряжение источника электрического тока:
Так, например, при напряжении источника переменного тока на первичной обмотке 200В, у этого трансформатора:
– на контактах a2 и X , при коэффициенте трансформации k1=0,9 напряжением будет U2=200В/0,9= 222,22 В
– на контактах a3 и X , при коэффициенте трансформации k2=1,125 напряжение равняется U3=200/1,125=177,77 В
ПРАВИЛО: Если коэффициент трансформации k>1 – то трансформатор понижающий, если же k
Чаще всего стандартный автотрансформатор имеет большее количество выводов, чем в нашем примере, большее количество ступеней для регулировки входящего напряжения или тока.
Логическим развитием автотрансформаторов, стало появление так называемых РЕГУЛИРУЕМЫХ АВТОТРАНСФОРМАТОРОВ, у которых нет множество дополнительных отпаек с разным коэфициентом трансформации, а количество витков вторичной обмотки, изменяется путем перемещения подвижного контакта по ней – подробнее об этом читайте ТУТ .
Изменение силы тока в автотрансформаторе
По силе тока есть простое правило – ток в обмотке более высокого напряжения меньше, чем ток в обмотке с более низким напряжением.
Другими словами, если используется понижающий отвод от первичной обмотки автотрансформатора – то ток на вторичной обмотке будет больше, а напряжение ниже и наоборот, если используется повышающий отвод – то ток на вторичной обмотке будет ниже, а напряжение выше.
Мощности же на обеих обмотках примерно одинаковы, поэтому, согласно закону ОМА:
I1U1 = I2U2, где I1 – ток в первичной обмотке, I2 – ток во вторичной обмотке, U1- напряжение в первичной обмотке, U2 – Напряжение во вторичной обмотке.
Соответственно ток, например, в первичной обмотке рассчитывается так: I1 = U2*I2/U1
Зная, как изменяется ток, можно заранее правильно подобрать кабели питания и защитную автоматику.
Теперь, когда вы знакомы с принципом работы автотрансформатора и знаете его конструкцию, давайте рассмотрим какие они бывают, их назначение и места применения, какие у них плюсы и минусы и чем принципиально отличаются от обычных трансформаторов. Всё это и многое другое читайте во второй части этой статьи. Подписывайтесь на нашу группу вконтакте, следите за выходом новых материалов!
Что такое автотрансформатор?
С развитием энергетики и связанных с ней электрических сетей для передачи переменного тока, как источника питания для различных устройств, возникла необходимость в приборах, изменяющих величину напряжения. Такими универсальными электромагнитными устройствами, позволяющими повышать или понижать исходное напряжение до требуемой величины, стали трансформаторы.
Со временем, для обеспечения стабильной работы электроприборов, преимущественно бытового назначения, возникла необходимость плавного регулирования напряжения. Это стало возможным после того, как был изобретён автотрансформатор – устройство, в котором вторичная обмотка является составной частью первичных витков.
Что такое автотрансформатор?
Из школьного курса физики известно, что простейший трансформатор состоит из двух катушек, намотанных на железные сердечники. Магнитным полем переменного тока, запитанного через выводы первичных обмоток, возбуждаются электромагнитные колебания во второй катушке, с аналогичной частотой.
При подключении нагрузки, к выводам рабочей обмотки, она образует вторичную цепь, в которой возникает электрический ток. При этом напряжение в образованной электрической цепи связано прямо пропорциональной зависимостью с количеством витков обмоток. То есть: U1/U2 = w1/w2 , где U1, U2 – напряжения, а w1, w2 – количество полных витков в соответствующих катушках.
Рисунок 1. Схема обычного трансформатора и автотрансформатора
Немного по-другому устроен автотрансформатор. Он, по сути, состоит из одной обмотки, от которой сделано один или несколько отводов, образующих вторичные витки. При этом все обмотки образуют между собой не только электрическую, но и магнитную связь. Поэтому, при подаче электрической энергии на вход автотрансформатора, возникает магнитный поток, под действием которого происходит индукция ЭДС в обмотке нагрузки. Величина электродвижущей силы связана прямой пропорциональностью с числом витков, образующих нагрузочную обмотку, с которой снимается напряжение.
Таким образом, формула, приведённая выше, справедлива и для автотрансформатора.
Из основной обмотки можно отводить большое количество выводов, что позволяет создавать комбинации для снятия различных по величине напряжений. Это очень удобно на практике, так как понижение напряжения часто требуется для питания нескольких блоков электроприборов, использующих различные напряжения.
Отличие автотрансформатора от обычного трансформатора
Как видно из описания автотрансформатора, главное его отличие от обычного трансформатора – отсутствие второй катушки с сердечником. Роль вторичных обмоток выполняют отдельные группы витков, имеющих гальваническую связь. Эти группы не требуют отдельной электрической изоляции.
У такого устройства есть определённые преимущества:
- сокращён расход цветных металлов, используемых на изготовление такого оборудования;
- передача энергии осуществляется путём воздействия электромагнитного поля входного тока, и благодаря электрической связи между обмотками. Следовательно, потеря энергии оказывается ниже, поэтому у автотрансформаторов наблюдаются более высокие КПД;
- малый вес и компактные габариты.
Несмотря на конструкционные различия, принцип работы этих двух типов изделий остаётся неизменным. Выбор типа трансформатора зависит, прежде всего, от целей и задач, которые приходится решать в электротехнике.
Типы автотрансформаторов
В зависимости от того в каких сетях (однофазных или трёхфазных) требуется изменить напряжение, используют соответствующий тип автотрансформаторов. Они бывают однофазными либо трёхфазными. Для трансформации тока с трёх фаз можно установить три автотрансформатора, предназначенных для работы в однофазных сетях, соединив их выводы треугольником или звёздочкой.
Схема соединений обмоток трансформатора
Существуют типы лабораторных автотрансформаторов, позволяющих плавно изменять значения по выходному напряжению. Такой эффект достигается путём перемещения ползунка по поверхности открытой части однослойной обмотки, наподобие принципа работы реостата. Витки проволоки наносятся вокруг кольцеобразного ферромагнитного сердечника, по окружности которого и перемещается контактный ползунок.
Автотрансформаторы подобного типа массово применялись на просторах СССР в эпоху массового распространения ламповых телевизоров. Тогда напряжение сетей было нестабильно, что вызывало искажения изображений. Пользователям этой несовершенной техники приходилось время от времени подстраивать напряжение до уровня 220 В.
До появления стабилизаторов напряжения, единственной возможностью достичь оптимальных параметров питания для бытовой техники того времени, было применение ЛАТР. Данный тип автотрансформаторов используется и сегодня в различных лабораториях и учебных заведениях. С их помощью осуществляется наладка электротехнического оборудования, тестируется аппаратура с высокой чувствительностью и выполняются другие задачи.
В специальном оборудовании, где нагрузки незначительны, применяются модели автотрансформаторов ДАТР.
Автотрансформатор ЛАТР
Существуют также автотрансформаторы:
- малой мощности, для работы в цепях до 1 кВ;
- среднемощные агрегаты (больше 1 кВ);
- высоковольтные автотрансформаторы.
Следует заметить, что с целью безопасности ограничено использование автотрансформаторов в качестве силовых трансформаторов, для снижения до 380 В напряжений, превышающих 6 кВ. Это связано с наличием гальванической связи между обмотками, что не безопасно для конечного потребителя. При авариях не исключено, что высокое напряжение попадёт на запитанное оборудование, что чревато непредсказуемыми последствиями. В этом кроется основной недостаток автотрансформаторов.
Обозначение на схемах
Отличить автотрансформатор на схеме от изображения обычного трансформатора очень легко. Признаком является наличие единственной обмотки связанной с одним сердечником, обозначенным жирной линией на схемах. По одну или по обе стороны этой лини схематически изображены обмотки, но в автотрансформаторе все они соединены друг с другом. Если на схеме витки изображены автономно, то речь идёт об обычном трансформаторе (см. рисунок 1).
Устройство и конструктивные особенности
Как было отмечено выше, автотрансформатор состоит из одной катушки. Её наматывают на обычный или на тороидальный сердечник.
Тороидальный трансформатор
В силу конструктивных особенностей у него отсутствуют гальванические развязки между цепями, что может привести к поражению высоковольтным током. Поэтому понижающий автотрансформатор, ввиду его повышенной опасности, требует принятия дополнительных мер по защите от поражения электротоком. Работа с ним допускается при условии строгого соблюдения правил безопасности.
Принцип действия автотрансформатора
Несмотря на особенности строения обмоточной части агрегата, его принцип действия очень напоминает работу обычного трансформатора. По такому же принципу во время циркуляции переменного тока возникает магнитный поток в сердечнике. Его действие на обмотку характеризуется появлением на каждом отдельном витке равновеликой электродвижущей силы. Суммарная ЭДС на отрезке обмотки равна сумме величин токов всех отдельно взятых витков.
Особенностью является то, что по обмотке циркулирует ещё и первичный ток, который оказывается в противофазе к индукционному потоку. Результирующие значения этих токов на участке обмотки, предназначенной для потребителя, получаются меньшими (для понижающего тр.) чем параметры поступающего электричества.
Схема понижающего автотрансформатора
Соотношение величин ЭДС выражается формулой: E1/E2 = w1/w2 = k , где E – ЭДС, w – количество витков, k – коэффициент трансформации.
Учитывая то, что падение напряжений в обмотках трансформатора невелико – его можно не учитывать. В таком случае равенства: U1 = E1; U2 = E2 можно считать справедливыми. Таким образом, приведённая выше формула приобретает вид: U1/U2 = w1/w2 = k, то есть, соотношение напряжений к числу витков такое же, как и для обычного трансформатора.
Не вдаваясь в подробности, заметим, что отношение силы тока верхней катушки к току нагрузки, как и для обычного трансформатора, выражается формулой: I1/I2 = w2/w1 = 1/k. Отсюда следует, что поскольку в понижающем трансформаторе w2 Обсудить на форуме
Что такое автотрансформатор
В данной статье подробно опишем все про автотрансформатор, его конструкцию и принцип работы, а так же рассмотрим переменный автотрансформатор.
Описание
В отличие от трансформатора напряжения, который имеет две электрически изолированные обмотки: первичную и вторичную, автотрансформатор имеет только одну одиночную обмотку напряжения, которая является общей для обеих сторон. Эта отдельная обмотка «постукивает» по разным точкам вдоль своей длины, чтобы обеспечить процент первичного напряжения питания на его вторичной нагрузке. Тогда автотрансформатор имеет обычный магнитный сердечник, но имеет только одну обмотку, которая является общей для первичной и вторичной цепей.
Поэтому в автотрансформаторе первичная и вторичная обмотки связаны друг с другом как электрически, так и магнитно. Основным преимуществом этого типа конструкции трансформатора является то, что он может быть значительно дешевле при той же номинальной мощности ВА, но самым большим недостатком автотрансформатора является то, что он не имеет изоляции первичной / вторичной обмотки обычного трансформатора с двойной обмоткой.
Участок обмотки, обозначенный как первичная часть обмотки, соединен с источником питания переменного тока, причем вторичная обмотка является частью этой первичной обмотки. Автотрансформатор также можно использовать для повышения или понижения напряжения питания путем изменения направления соединений. Если первичная обмотка является общей обмоткой и подключена к источнику питания, а вторичная цепь подключена только через часть обмотки, то вторичное напряжение «понижается», как показано ниже.
Конструкция автотрансформатора
Когда первичный ток I P протекает через одну обмотку в направлении стрелки, как показано, вторичный ток I S протекает в противоположном направлении. Таким образом, в части обмотки, которая генерирует вторичное напряжение, В S ток , вытекающий из обмотки представляет собой разность I P и I S .
Автотрансформатор также может быть построен с более чем одной точкой врезки. Автотрансформаторы могут использоваться для подачи различных точек напряжения вдоль его обмотки или увеличения напряжения питания относительно напряжения питания V P, как показано на рисунке.
Автотрансформатор с несколькими точками подключения
Стандартный метод маркировки обмоток автотрансформатора — маркировать его заглавными буквами, например, A , B , Z и т.д. Обычно общее нейтральное соединение обозначается как N или n . Для вторичных ответвлений используются номера суффиксов для всех точек ответвления вдоль первичной обмотки автотрансформатора. Эти числа обычно начинаются с цифры « 1 » и продолжаются в порядке возрастания для всех точек касания, как показано на рисунке.
Автотрансформаторный терминал маркировки
Автотрансформатор используется в основном для регулировки линейных напряжений, чтобы либо изменить его значение, либо сохранить его постоянным. Если регулировка напряжения на небольшую величину, либо вверх, либо вниз, то коэффициент трансформатора мал, так как V P и V S почти равны. Токи I P и I S также почти равны.
Следовательно, часть обмотки, которая несет разницу между двумя токами, может быть изготовлена из проводника намного меньшего размера, поскольку токи намного меньше, что экономит затраты на эквивалентный трансформатор с двойной обмоткой.
Однако регулирование, индуктивность рассеяния и физический размер (поскольку нет второй обмотки) автотрансформатора для заданного значения ВА или КВА ниже, чем для трансформатора с двойной обмоткой.
Автотрансформаторы явно намного дешевле, чем обычные трансформаторы с двойной обмоткой и той же оценкой ВА. При принятии решения об использовании автотрансформатора обычно сравнивают его стоимость со стоимостью эквивалентного типа с двойной обмоткой.
Это делается путем сравнения количества меди, сэкономленной в обмотке. Если отношение « n » определено как отношение более низкого напряжения к более высокому напряжению, то можно показать, что экономия в меди составляет: n * 100% . Например, экономия на меди для двух автотрансформаторов будет:
Автотрансформатор пример
Автотрансформатор требует повышающее напряжение от 220 вольт до 250 вольт. Общее количество витков катушки на главной обмотке трансформатора составляет 2000. Определите положение первичной точки ответвления, первичного и вторичного токов, когда мощность на выходе равна 10 кВА, а экономия меди сохраняется.
Таким образом, первичный ток составляет 45,4 А, вторичный ток, потребляемый нагрузкой, составляет 40 А, и через общую обмотку протекает 5,4 А. Экономия меди составляет 88%.
Недостатки автотрансформатора
- Основным недостатком автотрансформатора является то, что он не имеет изоляции первичной и вторичной обмоток обычного трансформатора с двойной обмоткой. Тогда автотрансформатор нельзя безопасно использовать для понижения более высоких напряжений до гораздо более низких напряжений, подходящих для меньших нагрузок.
- Если обмотка вторичной стороны становится разомкнутой, ток нагрузки прекращает протекать через первичную обмотку, останавливая действие трансформатора, в результате чего на вторичные клеммы подается полное первичное напряжение.
- Если вторичная цепь испытывает состояние короткого замыкания, результирующий первичный ток будет намного больше, чем у эквивалентного трансформатора с двойной обмоткой, из-за увеличенного магнитного потока, повреждающего автотрансформатор.
- Поскольку нейтральное соединение является общим как для первичной, так и для вторичной обмотки, заземление вторичной обмотки автоматически заземляет первичную, поскольку между этими двумя обмотками нет изоляции. Трансформаторы с двойной обмоткой иногда используются для изоляции оборудования от земли.
Автотрансформатор имеет множество применений и устройств, в том числе и пуск асинхронных двигателей, используемых для регулирования напряжения линий электропередачи, и может быть использована для преобразования напряжения, когда первичные к вторичному отношению близко к единице.
Автотрансформатор также может быть изготовлен из обычных двухобмоточных трансформаторов путем последовательного соединения первичной и вторичной обмоток, и в зависимости от того, как выполнено соединение, вторичное напряжение может увеличивать или уменьшать первичное напряжение.
Переменный автотрансформатор
Наряду с наличием фиксированной или постукивающей вторичной обмотки, которая создает выходное напряжение на определенном уровне, существует еще одно полезное применение устройства типа автотрансформатора, которое можно использовать для получения переменного напряжения от источника переменного тока с фиксированным напряжением. Этот тип переменного автотрансформатора обычно используется в лабораториях и научных лабораториях в школах и колледжах и более известен как Variac.
Конструкция переменного автотрансформатора, или вариака, такая же, как и для фиксированного типа. Одинарная первичная обмотка, намотанная на многослойный магнитный сердечник, используется, как в автотрансформаторе, но вместо того, чтобы фиксироваться в некоторой заранее определенной точке ответвления, вторичное напряжение отводится через угольную щетку.
Эта угольная щетка вращается или может скользить вдоль открытой части первичной обмотки, соприкасаясь с ней по мере движения, обеспечивая требуемый уровень напряжения.
Затем переменный автотрансформатор содержит переменный отвод в форме угольной щетки, которая скользит вверх и вниз по первичной обмотке, которая контролирует длину вторичной обмотки, и, следовательно, вторичное выходное напряжение полностью изменяется от значения первичного напряжения питания до нуля вольт.
Переменный автотрансформатор обычно имеет значительное количество первичных обмоток для создания вторичного напряжения, которое можно регулировать в диапазоне от нескольких вольт. Это достигается благодаря тому, что угольная щетка или ползун всегда находятся в контакте с одним или несколькими витками первичной обмотки. Поскольку витки первичной катушки равномерно распределены по ее длине. Тогда выходное напряжение становится пропорциональным угловому вращению.
Мы видим, что вариак может плавно регулировать напряжение на нагрузке от нуля до номинального напряжения питания. Если в некоторой точке вдоль первичной обмотки было подано напряжение питания, то потенциально вторичное выходное напряжение могло бы быть выше, чем фактическое напряжение питания. Переменный автотрансформатор также можно использовать для регулировки яркости света, а при использовании в этом типе приложений их иногда называют «диммерами».
Вариак также очень полезен в электротехнических и электронных мастерских и лабораториях, так как они могут использоваться для обеспечения переменного питания. Но следует соблюдать осторожность с подходящей защитой предохранителей, чтобы гарантировать, что более высокое напряжение питания не присутствует на вторичных клеммах в условиях неисправности.
Автотрансформатор имеет много преимуществ по сравнению с обычными трансформаторами двойных обмоток. Они, как правило, более эффективны при одинаковом номинальном значении ВА, имеют меньшие размеры и, поскольку в их конструкции требуется меньше меди, их стоимость ниже по сравнению с трансформаторами с двойной обмоткой с одинаковыми номинальными характеристиками. Кроме того, их потери в сердечнике и меди, I 2 R , ниже из-за меньшего сопротивления и реактивного сопротивления рассеяния, обеспечивающих более высокое регулирование напряжения, чем у эквивалентных двухобмоточных трансформаторов.
В следующей статье о трансформаторах мы рассмотрим другой дизайн трансформатора, у которого нет обычной первичной обмотки, намотанной вокруг его сердечника. Этот тип трансформатора обычно называют трансформатором токаи используется для питания амперметров и других таких индикаторов электрической мощности.
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Устройство, схема и принцип действия автотрансформаторов
Для корректировки и изменения показателей напряжения в пределах маленьких значений используются автотрансформаторы. Устройство и принцип действия этих приборов основана на магнитной и гальванической связи между цепями, так как обмотка напряжения низшего входит в обмотку напряжения высшего. В зависимости от того, какая из них включается, происходит незначительное понижение или повышение напряжения.
Устройство и технические характеристики
Сфера применения автотрансформаторов — питание бытовой техники, промышленные электросети, пуск асинхронных электродвигателей. На крупных производственных объектах они необходимы для повышения напряжения и одновременного уменьшения возможных потерь в линиях электропередач. Благодаря особенностям конструкции, оборудование составило серьезную конкуренцию обычным трансформаторам. В зависимости от назначения, устройствам присваивается буквенное наименование:
- С — для собственных нужд отдельных электрических станций.
- П — для электролиний с постоянным током.
- М — для металлургических предприятий.
- ПН — для подключения электронасосов погружного типа.
- Б — для буровых установок и бетоногрейных установок.
- Э — для экскаваторов с электрооборудованием.
- ТО — для организации временного освещения или тепловой обработки грунта или бетона.
В преобразователях электромагнитного типа передача энергии между обмотками происходит благодаря возникновению магнитного поля, сосредоточенного внутри магнитопровода. Отличие автотрансформатора от трансформатора заключается в наличии еще и электрической связи. В момент установки уменьшенного тока в той части обмотки, которая является общей между двумя цепями, возникает увеличение или понижение напряжения. По мнению специалистов, такое устройство позволяет сэкономить сталь, сократив ее количество для создания магнитопровода с меньшим сечением.
Большинство других деталей в конструкции практически ничем не отличается от комплектующих трансформатора. Принцип функционирования агрегата заключается в следующем: в момент создания нагрузки по обмотке перемещается электрический поток, а по проводнику — ток первичный. Происходит геометрическое сложение двух потоков, в результате чего на обмотку выдаются совсем малые показатели.
Типы агрегатов
В зависимости от схемы автотрансформатора и других особенностей конструкции выделяют несколько разновидностей оборудования. Наиболее популярными являются 8 из них, остальные встречаются реже. Каждый из них выбирается в соответствии с будущими условиями эксплуатации:
- АТД — оборудование с устаревшей конструкцией мощностью в районе 25 Вт.
- ВУ- 25-Б — позволяет уравнивать токи на вторичной обмотке, если используется схема дифференциальной защиты для силового трансформатора.
- ЛАТР-1 — лабораторный автотрансформатор, который может использоваться при 127 В.
- ЛАТР-2 — предназначен для бытовых сетей с напряжением 220 В, регулирует показатели напряжения контактом, который скользит по виткам обмотки.
- ДАТР-1 — разработан для функционирования в условиях невысокой нагрузки.
- РНО — предназначен для сетей с повышенной нагрузкой.
- АТНЦ — незаменимое оборудование в сфере телеизмерений.
- РНТ — оборудование, рассчитанное на максимально сильные нагрузки в сетях особого назначения.
Кроме того, классификация предполагает деление агрегатов на группы с малой мощностью (не более 1 кВ), средней мощностью свыше 1 кВ и силовые приборы. Использование автотрансформаторов позволяет повысить КПД в работе энергетических систем, а также уменьшить стоимость транспортировки энергии.
Однофазные и трехфазные приборы
В разных отраслях сегодня используются трехфазные и однофазные агрегаты. Последние представлены таким типом оборудования, как ЛАТР (лабораторные автотрансформаторы, рассчитанные на низковольтные сети). В линиях с повышенным напряжением используются понижающие автотрансформаторы, например, 220/100 и 220/110, в которых вторичная обмотка является частью первичной. В конструкциях повышающего типа первичная обмотка — это часть вторичного контура.
Схема автотрансформатора однофазного типа предполагает несколько отводов, которые ответвляются от основной катушки. Именно они и определяют понижающую или повышающую способность агрегата. В трехфазных конструкциях может быть два или три контура, а соединение обмоток напоминает по форме звезду. Они предназначены для работы нагревательных элементов в печах.
Аппараты, представленные с тремя обмотками, являются рабочими элементами высоковольтных сетей. Тип контакта предполагает соединения нулевого провода со звездой, что позволяет понизить напряжение, повысить КПД линии и уменьшить расходы на передачу энергии. Одним из недостатков является увеличение количества токов короткого замыкания.
Недостатки эксплуатации
Несмотря на то что автотрансформатор гораздо эффективнее и дешевле в эксплуатации, чем обычный трансформатор, в его использовании тоже могут возникать проблемы. Одним из серьезных недостатков является невозможность гальванической развязки обмоток.
Незначительный рассеивающийся электрический поток между обмотками может спровоцировать короткое замыкание при внезапных неисправностях и неполадках. Чтобы не спровоцировать нарушение функционирования агрегатов, вторичная и первичная обмотка должны иметь идентичные соединения.
В представленной системе затрудняется сохранение электромагнитного баланса, нормализовать который можно увеличением корпуса оборудования. При большой трансформации диапазона не получится существенная экономия энергоресурсов.
Принцип работы автотрансформатора и его конструктивные особенности не позволяют сделать систему с односторонним заземлением. При ремонте и устранении аварийных ситуаций персонал, обслуживающий оборудование, может подвергаться опасности из-за вероятности возникновения высшего напряжение и на низших обмотках. В таком случае установится соединение всех элементов с высоковольтной частью, а изоляция проводников может оказаться пробитой, что не допускается правилами безопасности.
Автотрансформатор – устройство и принцип действия
Благодаря такой особенности устройство обладает не только магнитной, но и электрической связью.
Устройство и принцип действия автотрансформаторов рассмотрим в статье.
Что такое автотрансформатор?
С общей точки зрения трансформаторы — приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.
При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.
Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.
Отличие автотрансформатора от трансформатора
Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.
На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.
В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.
Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.
Преимущества и недостатки
Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.
Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:
- незначительным расходом стали для изготовления сердечника;
- пониженным расходом меди для производства обмоток;
- простотой и незначительными габаритами конструкции;
- почти максимальным коэффициентом полезного действия, достигающим показателей 99 %;
- меньшими потерями на обмотках и стальных магнитных проводах;
- частичной передачей энергии с использованием электрических связей;
- достаточной полезной мощностью;
- наименьшими изменениями напряжения в условиях смены нагрузки;
- доступной для рядового потребителя стоимостью.
При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.
Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.
Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.
Устройство автотрансформатора
Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.
Двухобмоточный трансформатор и автотрансформатор
Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.
Поломку трансформатора можно определить при помощи мультиметра. Как проверить трансформатор мультиметром – особенности прямого и косвенного методов проверки.
Схему подключения трансформатора с трех мест вы найдете тут.
С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться по ссылке.
Принцип действия
Наиболее важные характеристики принципа действия стандартного автотрансформатора определены особенностью подключения обмоточной части.
В процессе подключения к катушке тока переменного типа внутри сердечника отмечается наличие магнитного потока.
Каждый виток на этом этапе эксплуатации прибора характеризуется индукцией электродвижущей силы с идентичной величиной.
Таким образом, принцип работы прибора объясняется стандартной схемой автотрансформатора, а в результате подсоединения нагрузки наблюдается перемещение вторичного электрического потока по обмотке. В это же время по проводнику осуществляется движение первичного тока. В результате величины двух потоков суммируются, поэтому на участок обмотки осуществляется подача незначительных по величине показателей электрического тока.
Советы и рекомендации
В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.
- дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
- принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
- высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
- газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.
Токовые трансформаторы – важное защитное свойство релейного типа. Схема подключения трансформатора тока – варианты монтажа вы найдете на нашем сайте.
Для чего необходим провод заземления? Подробно о назначении рассмотрим далее.
Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.