Универсальный регулятор мощности

Универсальный регулятор мощности

Универсальный регулятор мощности и яркости.

Автор: Провада Юрий Петрович aka Simurg
Опубликовано 10.08.2010

Вашему вниманию предлагается универсальный регулятор мощности с новым видом регулирования угла с двух сторон синуса. В качестве нагрузки можно подключать любой потребитель (постоянного тока) – коллекторные двигатели, паяльники, лампы накаливания любого напряжения, энергосберегающие лампы. А питать регулятор на любое переменное напряжение.
Ну теперь по порядку:

В настоящее время широкое распространение получили энергосберегающие лампы. Чтобы пользоваться светильником как ночником, или дежурной подсветкой в темном коридоре надо снизить их яркость. Можно простыми средствами регулировать их яркость а соответственно и ресурс (который возрастает до десяти раз) . Простым тиристорным регулятором менять яркость этих ламп нежелательно. В схемах электронных балластов, которые применяются в энергосберегающих лампах, на выходе после моста стоит электролитический конденсатор, который плохо работает с тиристорными регуляторами (большой импульсный зарядный ток приводит к их нагреву). В предлагаемых Вашему вниманию схемах регуляторов яркости применён принцип регулирования угла с двух сторон синусоиды, вначале и в конце, что позволяет снизить нагрузку на электролитический конденсатор. Целью является простота регулятора, минимальное тепловыделение, повторяемость, дальнейшая возможность модернизации и малые габариты. На выход регулятора можно подключать в том числе обычные лампы накаливания до 25 ватт, напряжением даже на 12 вольт (базовая схема) и паяльники до 150 ватт 220 в. Рассмотрим три схемы под единым названием “Бесплатный ночник”,: да и дневник тоже.
Первый вариант схемы “базовый” на основе которого можно построить ряд других доработок. Принцип работы схемы предельно прост, на выходе TL431 получаем прямоугольные импульсы для управления полевым транзистором ( Может быть любой на 400в и ток от 2А и выше, например BUZ90)
“Базовый” вариант схемы:

Принцип регулирования угла с двух сторон синусоиды вначале и в конце:

Импульсный заряд электролитического конденсатора происходит в очень короткие моменты, и только через один импульс плавного дозаряда, что не вызывает его нагрева, а пульсации частотой уже 200 Гц практически не заметны на самой лампе.
Заряд конденсатора:

Настройка заключается в подборе резистора R5 по желаемому диапазону регулировки (от 0% до 100% или от 60% до 100% или от 0% до 40%) При работе лампы на 60% мощности её ресурс резко возрастает.
Если в данной схеме включить светодиод в прямом включении последовательно со стабилитроном, он будет являться индикатором мощности (Его применение желательно когда регулятор используется для паяльника. Яркость его свечения указывает на выходную мощность).

В процессе эксплуатации данной схемы было замечено неустойчивое включение некоторых типов энергосберегающих ламп, которым необходим был начальный прогрев. Далее они работали и регулировались нормально. В связи с этим появилась схема с предварительным разогревом.
Схема с предварительным разогревом:

В момент включения С2 разряжен и напряжение на затворе открывает Т2, который в свою очередь шунтирует вход TL431, на выходе которой устанавливается высокий уровень 12в. Т1 открывается и подает на лампу всё напряжение в течении времени определяемой цепью R6, C2. Лампа быстро разогревается и готова к работе на пониженном напряжении питания без морганий и погасания. D7 необходим для быстрого разряда C2 при выключении регулятора.

Выше приведенные схемы не могут работать на нагрузку более 2-х ламп без нагрева транзистора Т1, (он устанавливается без радиатора), так как управление им происходит без применения драйвера. Для подключения более 3-х ламп предлагается схема с несложным драйвером.
Схема с драйвером:

В “базовую” схему добавился формирователь импульсов на Т2 и драйвер на Т3 – Т5. Транзистор Т1 IRF740. Данная схема показала хорошие результаты не только при работе на энергосберегающую лампу но и на обычную лампу накаливания, на паяльник 150 ватт.

Все приведенные схемы могут работать на любом напряжении от

250в. Необходимо только подобрать R1 (его можно убрать со стабилитроном если напряжение до 20в) и R2. Данные схемы очень надежны и работают у меня уже 5 лет не выключаясь на подсветку ванной комнаты. И лампу за 5 лет ни разу еще не менял! Также у человека “базовая” схема работает на движок подачи проволоки в сварочном полуавтомате.

Вот Вы и спросите: “А почему название “Бесплатный ночник”?” А я Вам расскажу. Собираете, например “базовую” схему, выставляете яркость немного больше минимума устойчивой работы лампы. Затем отключив все потребители в доме (И холодильник тоже). Обычно это ночью. Идёте на площадку – засовываете лапы в распределительный щиток:, ой в смысле смотрите на счётчик. И что мы видим – диск медленно доходит до язычка компенсации самохода (внутри у него такая штука есть) и :. О С Т А Н А В Л И В А Е Т С Я . А свет то у Вас горит – целых три лампы подсветки – ванная, коридор и кухня. А тут и простор для дальнейшей модернизации. На кухне я сделал без переменного резистора, а подобрал по минимуму устойчивого свечения. А штатный выключатель в лампе просто закорачивает сток – исток выходного транзистора, включая лампу на максимум. Очень удобно.

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Регуляторы мощности.

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 – к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 – СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 – К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2. 4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г – другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150. 250, у VT2 – 250. 270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50. 100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300. 600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической “1”) на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня (“О”) при совладении входных сигналов. В результате этого “Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

Читайте также:  Классификация диодов по мощности

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух “1” (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон — любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Простой универсальный регулятор мощности.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме – родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А.
Все резисторы МЛТ 0,125;
R4 – СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа – К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт – никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Регулятор мощности до трёх киловатт

Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.
Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.

Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.
Для начала монтажа устройства соберём детали.

Нам понадобится:
R1 – 20 Килоом, R3 – 3.3 Килоом, R4 – 300 Ом,
R2 – потенциометр – от 470 Килоом до 1 Мегаом,
C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ,
T1 -динистор или ещё его называют диак DB3,
T2 – симистор или по другому – триак.
Симистор можно взять Советского производства из серии КУ208.
Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.

Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово.

Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать. Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).

Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.

Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.

Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. 600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков.

Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так.

Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.

Теперь приступаем к сборке.

Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.

Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.

Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта – 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.

Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.

Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!

Смотрите видео и убеждайтесь, что всё работает, как и планировалось.


Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

Регулятор мощности с обратной связью

Обозначения:

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.
Читайте также:  Регулятор мощности для пылесоса своими руками

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Универсальные схемы регуляторов мощности

Регуляторы мощности, о которых речь пойдет ниже, могут быть использованы для работы с любой нагрузкой, мощность которой не превышает 3-х кВт. Силовые компоненты представленных регуляторов управляются простыми ШИ-схемами с синхронизацией частотой осветительной сети. Входное напряжение для нормальной работы регуляторов может иметь погрешность до 20% в обе стороны. Универсальность предлагаемых схем заключается в возможности применения в качестве силовых регулирующих компонентов тиристоров, симисторов или мощных полевых транзисторов при использовании одной и той же универсальной печатной платы.

рис.1 – схема регулятора 1

Управляющая часть схемы (рис. 1) первого регулятора выполнена на логической КМОП микросхеме U1 – CD4093 (К561ТЛ1) с триггерами Шмитта на входах, первые два элемента которой (U1.1, U1.2) выполняют функции формирователя прямоугольных импульсов, регулируемых по ширине с помощью потенциометра PR1. Импульсы (полупериоды сетевого напряжения) частотой 50Гц подаются на вход U1.1 с однополупериодного выпрямителя (диоды D1, D2) через резистивный делитель R3, R4, R5, подобранный таким образом, что бы порог срабатывания микросхемы (1,3В приблизительно) приходился на начало (5-7%) роста амплитуды положительного полупериода сетевого напряжения. На выходе U1.1 формируется последовательность прямоугольных импульсов (спад которых совпадает по времени с началом каждого полупериода), заряжающих конденсатор C2 при положительных значениях импульса и линейно разряжающие его при каждом спаде на выходе U1.1 через резисторы R6, R7, PR1. В зависимости от времени разряда конденсатора (определяется емкостью C2, сопротивлением цепи R6, R7, PR1) меняется во времени и ширина прямоугольных импульсов на выходе элемента U1.2. Элементы U1.3 и U1.4 являются инвертирующими повторителями и формирователями полярности, созданных U1.2 импульсов управления. Транзисторы Q1, Q2 формируют импульсы, мощность которых достаточна для управления затворами полевых транзисторов (если именно они будут применены в качестве силовых ключей), либо для управления светодиодом динисторного оптрона VO1 (в случае, если в качестве регуляторов будут использованы тиристоры или симистор). В результате изменения ширины управляющего импульса (с помощью PR1), напряжение (а, следовательно, и – мощность) на нагрузке может изменяться от 0 до 100%. Питание схемы управления и подача импульсов на ее вход организованы через гасящий резистор R1, сопротивление которого рассчитано для получения напряжения питания (от +8 до +13В) схемы управления. Сглаженное постоянное напряжение на катоде диода VD1 ограничено стабилитроном VZ1. Т.к. схема и печатная плата регулятора являются универсальными, компоненты схемы RA1, VO1, RAF1, DF1-DF6, RF1, RF2, VF1, VF2 – не используются при монтаже платы, если регулятор выполняется на полевых транзисторах. Наоборот, эти элементы используются, но не устанавливаются в схему Q3, Q4, R10, R11, если планируется изготовление тиристорного регулятора. Схема управления одинаково хорошо работает и с тиристорами и транзисторами. Имеется возможность установки симистора вместо тиристора VF1. В этом случае отменяется использование компонентов Q3, Q4, R10, R11, VF2, DF5, DF6, а значения резисторов RF1, RF2 остаются прежними, как и при использовании тиристоров.


рис.2 – схема регулятора 2

Вторая схема (рис. 2) аналогична первой по принципу управления, но вместо логической микросхемы в качестве управляющего ШИ-элемента используется не менее популярная – LM555. В качестве формирователя прямоугольных задающих импульсов с частотой сети использованы маломощные полевые транзисторы Q1, Q2 (2N7000). На транзисторе Q1, стабилитроне VZ2, резисторе R2 выполнен параметрический стабилизатор напряжения, питающийся от выпрямителя на диоде D1 с гасящим резистором R1 на входе. Конденсаторы С1 и С2 образуют совместно с транзистором Q1 сглаживающий фильтр, снижающий в достаточной степени пульсации сетевого напряжения. Напротив, в точке соединения резистора R3 и подстроечного потенциометра PR1, образующих регулируемый делитель напряжения, присутствует пульсирующее напряжение, полученное после частичного (однополупериодного) выпрямления диодом D1 и ограниченное стабилитроном VZ1 (для защиты затвора транзистора Q1 от возможного перенапряжения). Пульсации эти необходимы для формирования импульсов с помощью пороговых свойств транзистора Q1. В то время, когда напряжение в средней точке делителя R3-PR1 ниже порогового значения реакции затвора (для таких транзисторов порог срабатывания может лежать в диапазоне 1-3В), канал исток-сток транзистора будет заперт и на стоке будет присутствовать логическая единица в виде потенциала, близкого по значению к напряжению питания. И, – наоборот, – при напряжении, превышающего пороговое значение реакции затвора Q1, канал исток-сток будет открыт и на стоке образуется логический ноль по причине замыкания резистора R5 на общий провод схемы через открытый канал транзистора Q1. Q2 является инвертирующим элементом, формирующим сигнал сброса в виде импульса отрицательной полярности для одновибратора на таймере U1, принуждая его к работе каждый раз синхронно с нарастанием амплитуды сетевого полупериода. С появлением “импульса сброса” на входе U1 (вывод 2 микросхемы) на выходе таймера (вывод 3) формируется крутой фронт положительного импульса, длительность которого определяется номиналами элементов C5, PR2, R10.

Таким образом, изменяя сопротивление потенциометра PR2, можно менять ширину импульса на выходе U2, изменяя время открывания силовых компонентов схемы, а, значит, и выходное напряжение на нагрузке. Точно так же, как и в предыдущей схеме, функциональность схемы при использовании, как силовых КМОП-транзисторов, так и тринисторов, – не меняется и не ухудшается. Для использования полевых транзисторов в этой схеме не монтируются элементы RAF1, RF1-RF3, VO1, DF1-DF6, RY1, RY2, VF1, VF2. Для использования тиристоров не устанавливаются компоненты R9-R12, Q4, Q5. Конечно же, при выборе силовых компонентов, необходимо учитывать их преимущества относительно конкретного применения. Как известно, при обычном управлении тиристорами могут возникнуть проблемы при их открывании на небольшую (высокоомную) или индуктивную нагрузку. Однако при работе с мощной нагрузкой тиристоры (симисторы) предпочтительнее транзисторов из-за хорошей перегрузочной способности, как по току, так и по напряжению. Кроме того, если схемы управления данных конструкций питать через понижающий трансформатор (с соответствующим напряжением вторичной обмотки), то силовая часть конструкции может быть полностью развязана от схем управления. При использовании транзисторов в качестве силовых компонентов, такая развязка в предлагаемых схемах – невозможна. Схема с “развязанными” от схемы управления транзисторами уже не получится такой же простой и дешевой, как, например, схема с “развязанными” тиристорами.

Сами схемы и применяемые компоненты (см список) предполагают построение регуляторов мощностью до 3-х кВт при использовании тиристоров, 1 кВт при использовании транзисторов и симисторов из списка. Однако, как при макетировании, так и собранные на печатных платах, устройства проверялись лишь при мощностях до 1 кВт.


рис.3 – печатная плата регулятора 1 (вид со стороны установки компонентов – TOP)


рис.4 – печатная плата регулятора 1 (вид стороны пайки – Bottom)


рис. 5 печатная плата регулятора 2 (вид со стороны установки компонентов – TOP)


печатная плата регулятора 2 (вид стороны пайки – Bottom)

Печатные платы обоих регуляторов – двухсторонние. Силовые компоненты расположены в одном ряду для удобного совместного крепления к общему радиатору. В схеме второго регулятора (рис. 2) предусмотрено использование фиксируемой софт-кнопки (контакты S1, S2) включения-выключения устройства. В случае нажатия на кнопку вывод 4 таймера замыкается на общий провод схемы и работа таймера блокируется с обеспечением логического «0» на выводе 3 U1. Отпускание кнопки возобновит работу регулятора. Такую же кнопку «вкл-выкл» можно предусмотреть и в схеме регулятора на рис. 1, включив ее между выводами 5, 6 микросхемы U1 и положительным проводом питания схемы. Тогда, в случае подачи напряжения питания (нажатие кнопки) на выводы 5, 6 U1, работа ШИМ будет блокирована с низким выходным уровнем в точке соединения коллектор Q2- эмиттер Q1.

В качестве регулировочных потенциометров использованы многооборотные подстроечные резисторы, применение которых оправдано в случае использования фиксированных выходных значений регулятора. В этом случае достаточно совместить шлиц переменного резистора с небольшим отверстием в корпусе под тонкую отвертку. Для большинства случаев большего и не надо. Для частых оперативных регулировок регулировочный резистор можно установить на корпусе устройства на возможно минимальном расстоянии от платы регулятора для предотвращения наводок на соединительные провода, идущие к переменному резистору. С проводами до 10 см регулятор работает гарантированно нормально.

Читайте также:  Простой регулятор мощности для паяльника своими руками

В конструкциях регуляторов использованы достаточно распространенные электронные компоненты и возможна их замена на аналогичные детали в большинстве случаев.

Так, например, в схемах регуляторов испытывались в качестве мощных ключей транзисторы IRF840, IRF740, IRFP460, 20N60; тиристоры TYN1225, TYN812, Z0409MF; симисторы BT137-600E. Микросхема К561ТЛ1 заменима на аналогичную импортную CD4093; в качестве транзисторов Q2, 3 схемы второго регулятора работали отечественные КП501А; диоды 1n4007 могут быть заменены на любые кремниевые диоды с рабочим напряжением от 400В и током от 0,5А. АОУ103В применены в схеме только потому, что у меня они были. Они заменимы любыми динисторными оптронами аналогичных импортных серий типа MOC30XX без нулевого детектора. При этом отпадает необходимость в установке диодов с обозначением DF. Списки деталей приведенные ниже следует понимать так, – верхний список элементов – для регулятора 1; нижний, соответственно, – для регулятора 2.

Устройство регулятора мощности своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: