Рамочная антенна из коаксиального кабеля

Многовитковая рамочная антенна СВ – КВ – УКВ диапазонов.
Активно-пассивная нерезонансная магнитная антенна для широкополосного приёма.

Давайте-ка фразу “Лучшее – враг хорошего” оставим авторам изречения, будь то какой-нибудь там иноземный француз/итальяшка, злобный англосакс, или дикий Тунгус и сын степей калмык. А сами тем временем озадачимся модификацией отлично себя зарекомендовавшей рамочной антенны, подробно описанной на предыдущей странице.

Что позволяет считать описанную конструкцию “отлично себя зарекомендовавшей”? Многочисленные письма, приходящие мне на почту и сдобренные словами благодарности за возможность окунуться в волшебный мир радиоэфира. А также возможность в сложных условиях городских помех потрогать за вымя не только мегаваттного китайского АМ вещателя, но и эпизодичного радиолюбителя с позывным, и даже – свободного шарманщика-нелегала с паяльником в руках и собственной работы антенной в огороде.

На кой нам сдалось её модифицировать? Отвечу – стабильно усложняющейся помеховой обстановкой в городе в совокупности с естественной потребностью хоть как-то увеличить количество принимаемых корреспондентов!
Не знаю как у Вас, но у меня в последнее время в городской квартире с завидной регулярностью КВ диапазон начинает гудеть. Происходит это, как правило, в вечерние часы в полосе частот 3-15МГц с пиком шумовой плотности в районе 7МГц. В такие периоды времени любые типы антенн, кроме магнитных рамок, бессильны справиться со своими возложенными обязанностями. А вот фразу с предыдущей страницы о том, что экранирование рамки (с точки зрения шумовых характеристик) никаких преимуществ не даёт – я забираю обратно. В подобных условиях – очень даже даёт, причём помимо экранирования, возникает и потребность поворота плоскости рамки в такое положение, при котором шумы будут минимальны.

Так, с этим разобрались. А каковы пути дальнейшего улучшения приёмных свойств атенны?
Максимальная эффективность приёмной рамки диаметром около 30см находится в диапазоне частот: начиная с 10МГц и выше. Под эффективностью в данном случае я имею в виду такой параметр, как отношение сигнал/шум принимаемой станции. На более низкочастотных диапазонах для поддержания данного параметра требуется большее количество витков, причём тем большее, чем ниже частота принимаемого сигнала. Именно по такому принципу изменения количества витков на разных диапазонах строятся некоторые конструкции серийных магнитных КВ антенн, в том числе и описанные в статье (ссылка на страницу) “ПРИЁМНЫЕ МАГНИТНЫЕ КВ АНТЕННЫ СОВЕТСКОГО ВОЕНПРОМА”. И хотя приведённые рамки являются резонансными, все эти же принципы полностью распространяются и на нерезонансные магнитные антенны.

Амплитуда сигнала, поступающего с нерезонансной магнитной антенны, вполне достаточна для приёма приличным радиоприёмником с чувствительностью около 1мкВ. В этом случае, учитывая условия сильной зашумлённости КВ эфира в городе, большого смысла в введении антенного усилителя для рамочной антенны нет – вполне достаточно трансформатора для согласования несимметричного входа приёмника с симметричной антенной.
Если приёмник не обладает необходимой чувствительностью, то сигнал может быть без зазрения совести усилен посредством незамысловатой резонансной схемы, приведённой на предыдущей странице (ссылка на страницу).
Сложные схемы усилителей с дифференциальными входами и высоким коэффициентом усиления к ожидаемому улучшению не приводят, мало того, в силу широкополосности легко могут перегрузить смеситель приёмника и “порадовать” радиолюбителя непредвиденными интермодуляционными помехами.
С другой стороны, при наличии неблагоприятных условий в квартире и полном отсутствии балкона в каменных хоромах, может оказаться полезным вынос магнитной рамки на воздух, метра на 1-2 за пределы помещения. Поскольку длина кабеля между антенной и приёмником в данном случае может составлять значительную величину, то степень согласования волновых сопротивлений посредством симметрирующего трансформатора окажется явно недостаточной. Поэтому – при значительной длине коаксиального кабеля необходимость встроенного усилителя обусловлена функцией согласования волновых сопротивлений компонентов для получения приемлемых значений КСВ.

Итак – тезисы выдвинуты, пора переходить к схеме электрической принципиальной.


Рис.1

Для расширения диапазона эффективно принимаемых частот вплоть до среднечастотного диапазона (500кГц) было принято решение увеличить количество витков рамочной антенны до 4-ёх.

Я использовал готовый четырёхжильный кабель ПВС 4*0,75, а в качестве экрана прикупил метр трубы медной отожжённой KME SANCO с внешним диаметром 12мм и толщиной стенок 1мм. Всё это хозяйство в минимальном объёме мне удалось приобрести в интернет магазине https://santshop.ru/, за что ему большое человеческое спасибо. После того как трубка будет свёрнута в кольцо, необходимо её разрезать пополам для того, чтобы организовать 1. 1,5 сантиметровый зазор в экране, в который и будет проникать магнитная составляющая радиосигнала.

Три сдвоенных переключателя S1-S3 коммутируют витки кабеля, соединяя их между собой либо параллельно, либо последовательно, что позволяет таким образом изменять их количество на входе симметрирующего трансформатора Tr1 от 1 до 4.

Посредством переключателя S4 осуществляется выбор режима работы антенны между активным либо пассивным режимами.

Активное звено части усилителя, спрятанное в корпусе антенны, построено несколько нетрадиционно.
Во-первых, оно представляет собой 2 эмиттерных повторителя, включённых параллельно.
Во-вторых, не подразумевает подводимого к нему источника питания и запитывается от нагрузки, находящейся на другом конце кабеля, а конкретно – в составе основной части усилительного устройства.
Что даёт нам такое построение?
А даёт нам это – нормированное выходное сопротивление звена, равное ≈ 26 Омам, что гарантирует параметр КСВ при работе на 50-ти омный коаксиальный кабель, не превышающий 2.
Параллельное включение повторителей на Т1 и Т2, каждый со своей цепью смещения, пришлось использовать вынужденно – в связи со сложностью нахождения радиочастотных p-n-p транзисторов необходимой мощности. Тупо соединять в параллель транзисторы в подобном построении – решение не самое хорошее, так оно чревато повышенными нелинейными, а также интермодуляционными искажениями.
Токи покоя транзисторов (по 10мА каждый) задаются резисторами смещения R1 и R2, номиналы которых необходимо подобрать на финальном этапе настройки схемы.

Как это всё выглядит?


Рис.2

Понятно, что в связи с увеличением количества витков в рамке, трансформатор, который мы мотали на предыдущей странице в соответствии с рекомендациями 1428 (ссылка на страницу) при работе на нижних диапазонах окажется не самым оптимальным.
Налицо – необходимость увеличения индуктивности первичных обмоток. С другой стороны, при работе на верхних диапазонах, когда ко входу трансформатора подключён всего один виток – такое увеличение индуктивности будет нежелательным. Поэтому компромиссным решением следует считать незначительное увеличение индуктивности обмоток (я счёл оптимальным – в 2-3 раза) при сохранении количества витков в обмотках во избежание пропорционального увеличения паразитных ёмкостей трансформатора.
Делается это просто – увеличением размера используемого ферритового сердечника (бинокля). Оценить эти размеры можно по фотографии, приведённой на Рис.2 справа.

Однако пришло время обнародовать схему ответной части усилителя.

Рис.3

Простейший усилитель, приведённый на Рис.3, за счёт введения возможности регулировки усиления обеспечивает лучшие показатели, чем дифференциальные усилители, часто встраиваемые в корпус рамки, без возможности такой регулировки.

Как это работает? Резистор R1 является нагрузочным для эмиттерных повторителей, находящихся в корпусе рамки антенны. Далее следует усилительный каскад, выполненный по схеме с общей базой, на транзисторе Т1, в качестве нагрузки которого выступает резистор R8, зашунтированный дросселем L1.
Переменный резистор R4 выполняет функцию регулировки усиления входного сигнала в пределах 2. 10 раз по напряжению.

Входное сопротивление схемы Rвх определяется величиной параллельно соединённых R1 и суммы сопротивлений: R3, R4 и Rвх каскада с ОБ на транзисторе Т1, т.е. Rвх ≈ R1ll(R3+R4). Легко заметить, что при изменении значения потенциометра R4 в диапазоне 0. 200 Ом, величина входного сопротивления усилителя будет принимать значения от 26 до 107 Ом. А это, в свою очередь, практически во всём диапазоне регулировки уровня обеспечивает параметр КСВ, не превышающий 2 (за исключением незначительного превышения при самом низком уровне усиления).

Ну и наконец, эмиттерный повторитель на транзисторе Т2, работающий при значительном токе покоя, призван согласовать усилительный каскад с 50-омным входным сопротивлением радиоприёмника.

Настройка схемы сводится к подбору резисторов R1 и R2, находящихся внутри антенны (Рис.1).
Делается это следующим образом:
1. К выходу схемы (точка соединения R5 и R6) временно подпаиваем резистор номиналом 240 Ом, второй вывод которого подключаем к источнику питания 12В.
2. Эмиттер транзистора Т2 отключаем от R6. Подбираем значение резистора R1 для получения тока, отдаваемого источником питания – 13мА.
3. Возвращаем подключение эмиттера Т2 к R6. Подбираем значение R2 для получения тока, отдаваемого источником питания – 20мА.
При завершении настройки – токи через транзисторы должны уровняться и установиться на уровне ≈ 10мА через каждый.
4. Отпаиваем резистор номиналом 240 Ом и считаем настройку внутренней части усилителя выполненной.
Ответная часть усилителя должна заработать без всякой настройки, хотя проверить значения напряжений в указанных на схеме точках будет совсем не лишним.

Дроссель L1 следует изготовить самостоятельно на низкочастотном феррите с наружным диаметром 15-20мм. Это необходимо для минимизации завала АЧХ при работе на верхних диапазонах посредством уменьшения количества витков, а соответственно и собственной паразитной ёмкости моточного изделия.

А на следующей странице рассмотрим более серьёзную ответную часть усилителя, обладающую резонансными свойствами и позволяющую достигать максимального усиления без перегрузки входных цепей и смесителя радиоприёмника.

УКВ рамочная антенна из коаксиального кабеля

Рамочные антенны делают иногда из оплётки коаксиального кабеля. Один из вариантов подобной антенны есть во второй части моей книги “Антенны КВ и УКВ”. Он имеет не только много плюсов (дешевизна, широкая полоса, быстрота изготовления), но и минус.

Входное сопротивление круглой или квадратной рамки – около 120 Ом, а фидер обычно имеет волновое сопротивление 50 Ом. Вариантов согласования в данном случае всего два. Можно растянуть рамку в узкий прямоугольник с соотношением сторон 1:2. Только при такой форме она имеет входное сопротивление 50 Ом. Однако это решение неудобно с конструктивной точки зрения. А при более привычной и удобной форме рамки (круг, квадрат) для согласования надо применять согласующее устройство. Это тоже не украшает конструкцию из-за необходимости вводить дополнительные элементы.

В статье приведено описание удобного конструктивного варианта выполнения рамки и её согласующего устройства (на входное сопротивление 50 Ом) из одного цельного куска коаксиального кабеля с волновым сопротивлением 75 Ом.

Идея заключается в том, чтобы использовать в качестве согласующего устройства λ/4 отрезок коаксиального кабеля с волновым сопротивлением 75 Ом, который трансформирует 120 Ом в 50 Ом. А из такого же кабеля сделать и саму рамку антенны.

Получившаяся конструкция показана на рис. 1. Антенну делают из куска кабеля 75 Ом (например, RG-59, как на этом рисунке). Длину его выбирают из следующих соображений.

Электрический периметр самой рамки должен быть 1,03. 1,05λ – на УКВ требуются повышенные значения коэффициента удлинения из-за большого (относительно длины волны) диаметра проводника рамки. Но в нашем случае он сверху покрыт довольно толстым слоем пластика (внешняя изоляция), который оказывает заметное укорачивающее действие и компенсирует коэффициент удлинения. Поэтому физический периметр рамки из кабеля получается около 1λ.

Читайте также:  Как удлинить СИП кабель

Небольшие неточности (например, из-за разброса диэлектрической проницаемости изоляции кабеля) не страшны. Полоса пропускания антенны получится большой, и это прощает небольшие погрешности при её изготовлении.

Электрическая длина согласующего отрезка должна быть Я/4. А физическая – в коэффициент укорочения Кук (внутренний, из паспорта кабеля) раз меньше. Полная длина отрезка кабеля
равна сумме вышеупомянутых длин. Например, для RG-59, у которого коэффициент укорочения 0,66, полная длина составит 1λ+0,66λ/4=1,165λ.

Изготавливают эту антенну так. Отрезают кусок коаксиального кабеля с волновым сопротивлением 75 Ом – его длина должна быть немного больше рассчитанного выше значения. На его верхнем конце оплётку срезают на длину несколько миллиметров, а центральный проводник оголяют.

От разделанного верхнего конца отступают ровно на одну длину волны, и в этом месте аккуратно вскрывают внешнюю изоляцию кабеля, не повреждая оплётку, так, чтобы её фрагмент был доступен для пайки. В этом месте к оплётке припаивают центральный проводник верхнего конца, и это соединение гидроизолируют (например, термоклеем). Получившейся петле придают форму круга или квадрата.

Нижний конец кабеля подключают либо непосредственно к антенному гнезду трансивера с выходным сопротивлением 50 Ом, либо к основному фидеру с волновым сопротивлением 50 Ом.

По вышеописанному рецепту была изготовлена измерительная антенна на частоту 290 МГц (λ=1,03 м) из отрезка коаксиального кабеля RG-59 длиной 1,2 м (1,165λ). Зависимость КСВ этой антенны от частоты показана на рис. 2.

Полоса по уровню КСВ Дата публикации: 30.09.2013

Мнения читателей
  • Анатолий. / 15.03.2016 – 16:10
    Кто мне высчитает на 145мг в сантиметрах
  • константин / 06.06.2014 – 08:43
    работает нормально.пробовал разные варианты подпайки оплетки.еще по зиме сделал несколько таких колечек – мне потребовалось разные диапазоны частот. плохо,что украли нехорошие люди плавный делитель – сложно без него точно подобрать размеры кто еще пробовал чиркните как у вас получилось + на каких частотах. очень сейчас нужно!
  • Сергей / 08.05.2014 – 14:15
    Я в радио больше пол-ста лет. Что сказать – молодец автор !

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

Антенны из коаксиального кабеля

Антенны из коаксиального кабеля

Практические конструкции радиолюбительских антенн

Коаксиальный кабель используется для передачи радиочастотных электрических сигналов. Радиолюбителями применяется для питания антенн, но можно построить и сами антенны из этого кабеля. Так даже небольшие куски, длиной от 2 до 5 метров, пойдут в дело, кстати их можно недорого купить на разного рода “развалах”, да и в радиолюбительском хозяйстве найдутся невостребованными такие обрезки, потому что для питания антенн они слишком коротки, а если скручивать их и потом пытаться использовать как “цельный” кабель, то по крайней мере это будет совсем нецелесообразно.

Коаксиальный кабель, по сравнению с медным проводом такой же толщины, который также широко используется радиолюбителями в антенностроении, имеет преимущества. Кабель по цене будет дешевле медного провода, он легче, и, что конечно очень важно, обладает достаточной механической прочностью для построения антенн.

Экранирующую оплётку кабеля можно паять паяльником небольшой мощности (для антенных, зачастую уличных работ – это важно), а внешняя оболочка коаксиального кабеля обеспечивает его многолетнюю работу в условиях атмосферных воздействий, так как она для этого специально была разработана.

ДИПОЛЬНАЯ КОАКСИАЛЬНАЯ АНТЕННА

Антенна, показанная на рисунке 1, является симметричной антенной независимо от её подвеса — вертикального или горизонтального. Оптимальным вариантом питания такой антенны будет питание её через симметрирующее устройство, которое можно сделать из такого же коаксиального кабеля, как и сама антенна.

Наиболее простая антенна из коаксиального кабеля – это обычный вертикальный или горизонтальный диполь (рис.1).

Для питания этой антенны подойдёт коаксиальный кабель с волновым сопротивлением 50 или 75 Ом.

В табл. 1 приведены значения длин плеч диполя для диапазонов от 2 до 20 метров.

Вследствие относительно большой толщины антенна обладает достаточно большой широкополосностью в этих диапазонах.

Поэтому, при точном соблюдении размеров, указанных в табл. 1. антенна настройки не требует.

Конструкция простого симметрирующего устройства показана на рисунке 2, а в таблице 2 приведены данные его длин для работы в диапазонах от 2 до 20 метров.

Длины отрезков кабеля симметрирующего устройства указаны для коаксиального кабеля с полиэтиленовым заполнением и коэффициентом укорочения, равным 0,66. Такое симметрирующее устройство подойдёт и для питания дипольных антенн сделанных из обычного провода.

РЕЗОНАТОРНАЯ ДИПОЛЬНАЯ АНТЕННА

Более эффективную резонаторную антенну из коаксиального кабеля можно построить согласно рисунку 3. Эта антенна представляет собой вариант обыкновенного петлевого диполя сделанного из коаксиального кабеля.

Первые упоминания о такой антенне появились в литературе ещё в 50-х годах, очевидно к тому времени можно отнести и изобретение этой антенны. Как и для многих других антенн, имя её изобретателя точно указать не представляется возможным, очевидно, с распространением коаксиального кабеля такая антенна была изобретена практически одновременно и независимо в разных странах.

Резонаторная антенна иногда используется как составная часть некоторых сложных антенн СВЧ-диапазона. Эта дипольная антенна работает как обычный классический петлевой диполь. Длина плеч антенны “С” составляет четверть длины волны. Длина плеч антенны “А” составляет четверть длины волны в коаксиальном кабеле. Отрезки “В”, выполненные из короткозамкнутых отрезков коаксиального кабеля, удлиняют плечи антенны “А” до четвертьволновой длины. Отрезки “В” могут быть сделаны из отрезков медного провода.

Полоса пропускания антенны ограничена с одной стороны полосой пропускания диполя образованного частью “С”, а с другой стороны полосой пропускания четвертьволнового резонатора “А”. Однако, резонаторный диполь имеет работоспособность в полосе частот любительских УКВ и KB диапазонов. Теоретически входное сопротивление резонаторного диполя равно волновому сопротивлению коаксиального кабеля, из которого он сделан. Вот это и позволяет использовать для его питания такой же коаксиальный кабель, как и тот из которого сделана антенна, что еще более увеличивает её универсальность.

Резонаторная антенна является симметричной, и для её питания целесообразно использовать симметрирующее устройство, показанное на рисунке 2. Размеры резонаторной дипольной антенны для работы в диапазонах от 2 до 20 метров приведены в таблице 3.

НЕСИММЕТРИЧНЫЕ ВЕРТИКАЛЬНЫЕ АНТЕННЫ ИЗ КОАКСИАЛЬНОГО КАБЕЛЯ

Несимметричная вертикальная антенна отличается от симметричной тем, что одно её плечо или часть выполнено отличным образом от другой части, или тем, что на одну из её частей влияние посторонних предметов будет гораздо больше, чем на другую.

Наиболее простая конструкция несимметричной антенны из коаксиального кабеля показана на рис. 4. Здесь вертикальная часть антенны с помощью капроновой веревки может быть подвешена вертикально между двумя опорами — деревьями, мачтами других антенн (рис. 4А), или подвешена наклонно с помощью капронового шнура к одной из опор (рис. 4Б). Противовес штырьевой антенны, сделанной из коаксиального кабеля, может находиться в непосредственной близости от земли. Для вертикальной антенны противовес целесообразно выполнить как показано на рисунке 5.

В данном случае он сделан из четвертьволнового изолятора-резонатора “А”, который удлинен до резонансной частоты, необходимой для работы противовеса, отрезком “В”. Отрезок “В” можно сделать как из коаксиального кабеля, так и из медного провода. Длины частей “А” и “В” приведены в табл. 4. Таблица с учетом использования коаксиального кабеля с коэффициентом укорочения 0,66.

Вертикальная антенна из коаксиального кабеля, с четвертьволновым резонатором в противовесе, обладает преимущества перед вертикальной антенной с обычными противовесами. Полотно всей антенны получается электрически замкнуто, что делает её работу безопасной во время грозы, четвертьволновый резонатор имеет малое сопротивление для нерезонансных частот, а это обеспечивает дополнительную частотную селекцию при приеме и фильтрацию гармоник в антенной системе при передаче.

Вертикальная антенна из коаксиального кабеля, с одним противовесом, расположенным под углом 90° к штырю имеет сопротивление, близкое к 40 Ом, для изготовления и питания этой антенны подходит кабель с волновым сопротивлением 50 Ом.

Если для питания антенны используется 75-омный коаксиальный кабель, можно согласовать антенну при помощи укорачивающего конденсатора.

ПРОСТАЯ НЕСИММЕТРИЧНАЯ АНТЕННА

Из коаксиального кабеля можно сделать очень простую несимметричную антенну. Впервые в радиолюбительской литературе она была описана W6SA1 в 1956 году. Эта антенна получила название – антенна “Slim cobra”. Её различные модификации время от времени появляются в радиолюбительской литературе.

Это чисто радиолюбительская антенна, так как при обзоре достаточно многих источников, не попадались упоминания о её использовании в профессиональной связи.

На рис. 7 показана классическая антенна W6SA1. Она полностью сделана из коаксиального кабеля, на длине кабеля 0,24 длины волны снят экран. Это излучающая часть антенны. На расстоянии 0,27 длины волны от излучающей части на экране выполнен высокочастотный дроссель из 5-7 ферритовых колец. Кольца можно закрепить на кабеле при помощи изоляционной ленты. Проницаемость феррита колец некритична. Этот дроссель может обеспечить работу антенны при подводимых к ней мощностях 100 – 200 Вт. Больший уровень мощности на нижних KB диапазонах, и меньший уровень на верхних. При превышении указанной мощности ферритовые кольца могут перегреться и рассыпаться.

Если все же предполагается работать на больших мощностях, дроссель целесообразно выполнить бескаркасным, намотав 10-20 витков этого же коаксиального кабеля на оправку диаметром 30-60 мм. Но, конечно, такой дроссель более громоздок, чем на ферритовых кольцах.

В однопроводной кабельной антенне длина излучающей части с учетом коэффициента укорочения, равна длине излучающей части классической вертикальной антенны, длина “земли” однопроводной кабельной антенны немного больше длины классического противовеса.

Это связано с тем, что при протекании земляных токов отсутствует коэффициент укорочения, который имеет место в дипольных и несимметричных вертикальных антеннах.

На практике опытным путем выведено, что минимальный КСВ антенны, сделанной из 50-омного кабеля, будет при расположении дросселя на расстоянии 0,27 длины волны.

Антенна может работать в полевых условиях, её можно легко установить в качестве вспомогательной антенны, просто “бросив” из окна верхнего этажа на дерево, или другой дом, при этом антенна не нуждается в настройке.

В таблице 5 приведены размеры антенн для работы в диапазонах от 2 до 40 метров.

Магнитные антенны из коаксиального кабеля

Антенны для радио помогают значительно улучшить качество звука, избежать помех, оригинальная радиоантенна может стать интересным элементом интерьера. В последнее время стали появляться и пользоваться спросом у радиолюбителей конструкции на магнитной основе. Антенной рамочной магнитной можно с успехом заменить наружные приспособления для приема радиосигналов диапазоном от 10 до 80 метров за счет использования рамок. Их можно сооружать в любом месте города, а также в автомобиле, как альтернативу привинчивающимся к корпусу. Такие антенны очень удобны и мобильны, однако, при довольно простой конструкции их использование имеет некоторые особенности.

Читайте также:  Кабель канал плинтусного типа

Устройство рамочной магнитной антенны

Обычным антеннам, помимо того, что они крепятся достаточно прочно, необходимо иметь весьма приличную массу, которую к мобильным легким устройствам радиоприема подвести просто невозможно. В современных условиях найден выход –необходимая масса попросту имитируется. Делается это с помощью соосного кабеля коаксиала, который при протяженности в половину радиоволны, взятой с коэффициентом укорачивания, выполняет роль усилителя полного сопротивления.

Центральная проводящая жила (или несколько) такого кабеля выполняется из чистой или луженой меди, что обеспечивает повышенное сопротивление постоянному электротоку, а также придает кабелю гибкость. Диэлектрический слой выполнен из вспененного гранулированного полиэтилена. Эти материалы дают стабильность качественных характеристик провода и длительный срок службы. Экранирующий слой представляет собой оплетку из медных или луженых проводков. Для повышения экранирующих свойств делается второй слой оплетки поверх ламинированной фольги из алюминия.

Современные магнитные антенны являются улучшенными вариациями рамочных аналогов. Такие приспособления представляют собой катушки на ферритовых сердцевинах. В силу повышенной магнитопроницаемости этого материала, магнитное поле электромагнитных волн в катушечных контурах генерирует очень мощный поток, более сильный, чем при отсутствующем сердечнике.

Даже небольшие катушки способны создать такую же электро-движущую силу, как и простые антенны-рамки, но больших габаритов.

Размеры сердечников составляют от 0,1 до 0,3 метра в длину и от ½ до 1 кв. см. площадью поперечного разреза. Каждая катушка, как правило, насчитывает 2-3 десятка витков медной проволоки.

Магнитные рамки для антенны из коаксиального кабеля представляют собой петли из проводникового материала, присоединенные к конденсатору. Чаще всего встречаются петли круглой формы, поскольку так устройство работает гораздо эффективней. Площадь круга меньше площади других геометрических форм, поэтому охват радиосигналов будет выше.

Обратите внимание! В магазинах для радиолюбителей продаются антенные рамки именно круглой формы. Однако существуют и треугольные, и квадратные, и даже многоугольные рамки, их применение объясняется особенностями местоположения в доме, габаритами радиоприемника и др.

Для приема сигнала в выбранном диапазоне используются петли, разные по диаметру.

В рамках как круглой, так и квадратной формы применяется нескрученный проводник (такие антенны называются одновитковыми), они отлично функционируют на диапазонах высоких частот, но при этом их габариты довольно крупные. Эти недостатки исправляет набирающая популярность у радиолюбителей, предпочитающих низкие частоты, магнитная рамочная конструкция, являющаяся многовиточной.

Дополнительная информация. Чем больше витков, тем меньше габариты антенного устройства.

Особенности эксплуатации и расположения устройства

Рамочную магнитную антенну из коаксиального кабеля используют преимущественно в тех случаях, когда необходимо снизить уровень помех и шума от соседних радиостанций, работающих в диапазоне, близком к волнам приемного устройства, однако испускаемых в другом направлении. Рамочные антенны лучше всего справляются с приемом радиоволн, распространяемых вдоль ее плоскости, а вот сигналы, идущие параллельно, они не ловят совсем. Для того чтобы достигнуть самого лучшего, без помех звучания искомой радиостанции, нужно просто вращать рамку вокруг своей оси.

Такие механизмы можно располагать и на крыше здания. Однако при этом необходимо учитывать, что такие антенны должны быть выше других (поэтому при балконной установке коэффициент полезного действия снижается). При этом на функционирование магнитных рамочных антенных устройств не влияет соседство с прочими предметами и сооружениями (вентиляционными башнями, трубами и т.п.).

Идеального расположения добиться практически невозможно, однако, лучшим будет установить антенну так, чтобы ферритовый сердечник был направлен вдаль, в таком случае радиосигнал не будет подавляться антеннами с более крупными габаритами.

Для нормальной работы рамочной антенны с коаксиальным кабелем необходимо синхронизировать сам провод и рамки. Согласованности можно достигнуть, поместив индукционные небольшие петли в большие по диаметру. Чтобы конструкция работала симметрично, в нее может быть добавлено симметрирующее трансформаторное устройство. Если симметричность радиосвязи не требуется, кабель к антенне можно подсоединять напрямую.

Для антенны необходимо обеспечить заземление, оно производится в районе прикрепления шлейфа к точке, где находится основание большой петли.

Важно! Если шлейф слегка деформировать, антенну можно будет настроить более тонко.

Коаксиальный кабель при монтаже и дальнейшей эксплуатации укорачивать не рекомендуется, поэтому желательно до приобретения антенны определить, какой длины будет достаточно.

Установить магнитную рамочную антенну в автомобиле кажется делом нехитрым, однако проводить эту манипуляцию надо очень аккуратно. Перед тем, как поместить магнитную антенну на кузов, надо очистить будущее место установки и магнитную подушку антенны от засорений, иначе лакокрасочное покрытие автомобиля может быть повреждено.

Плюсы и минусы устройства

Магнитные антенны из коаксиального кабеля имеют множество преимуществ перед другими устройствами аналогичного назначения:

  • их относительно просто монтировать, и в дальнейшем они не требуют особого обслуживания во время эксплуатации;
  • можно устанавливать в небольших помещениях;
  • срок службы таких антенн довольно велик;
  • доступность и невысокая себестоимость комплектующих, ее можно собрать самостоятельно при начальных познаниях и опыте в радиотехнике;
  • могут нормально функционировать, находясь по соседству с другими радиоагрегатами, использование в качестве составляющей магнита обеспечивает отличный чистый прием в условиях городов;
  • стабильность работы не зависит от сезонных и погодных условий, не требуется особых усилий для достижения четкого приема радиосигнала;
  • автомобильные антенны на магнитной основе очень мобильны, т.е. установить их можно за несколько минут и на любом месте автомобиля (при этом не требуется сверления), что способно внести заметный штрих в экстерьер машины (к тому же, антенн можно поставить несколько: в разных местах, что лишний раз продемонстрирует «крутость» автовладельца);
  • поскольку коэффициент усиления радиосигнала резко снижается при длинах волн меньше 1/10 протяженности периметра, то принимающая магнитная антенна помогает защитить радиоприемник от перегрузки другими радиостанциями;
  • в диапазоне УКВ-ЧМ (частотной модуляции, т.е. при частотах 65,9-74 мегагерц) магнитные антенны демонстрируют наиболее качественный прием, по сравнению с аналогами или даже аппаратами наружного типа, при этом величина рамочного периметра составляет от 20 до 40 сантиметров.

Магнитные антенны с коаксиальным кабелем не лишены и некоторых недостатков:

  • если приходится менять рабочий диапазон радиоприемника, нужно всё время заниматься подстройкой конденсаторов переменной емкости для более четкого приема сигнала;
  • легче всего избавиться от помех и посторонних эфирных шумов, разворачивая конструкцию антенны вокруг собственной оси и одновременно меняя ее месторасположение, однако, для рамочных магнитных устройств такие манипуляции бывают затруднены из-за различной формы рамок и неудобного расположения деревянного шлейфа;
  • во время передачи сигнала металлические элементы конструкции сильно разогреваются, что чревато ожогами при неосторожном обращении;
  • после установки длину коаксиального кабеля менять нельзя, потому что прием может значительно ухудшиться, что объясняется сбоем параметров в колебательной системе радиоприемника;
  • на круглой или квадратной рамке существует входное электросопротивление в 120 ом, тогда как на фидере оно 50 ом, поэтому для согласования приходится формировать рамку в форму прямоугольника, где короткие стороны в два раза меньше длинных, тогда сопротивление на входе также составит 50 ом, однако, конструктивно это довольно сложно и неудобно;
  • чем больше реальной массы магнитной антенны заменяется коаксиальным проводом, тем ниже качество приема, поэтому антенны такого типа надо выбирать очень вдумчиво.

Сборка антенны своими руками

Магнитные рамочные антенны отличаются достаточно простой конструкцией, поэтому их возможно выполнить даже не слишком опытным радиолюбителям. Такую антенну можно собрать с использованием коаксиального кабеля любого типоразмера.

Для создания простейшего экземпляра магнитной антенны необходимы следующие составляющие элементы:

  • кабель-коаксиал (соосный) марки РГ213, примерно 12 метров;
  • кабель марки РГ58, около 4 метров;
  • планки из сухой древесины, 2 на 4 см в количестве 4 штук;
  • конденсатор емкости в 100 пикофарад, 1 штука, при этом межпластинное расстояние не должно превышать 3 мм;
  • коаксиальный разъем, одна штука.

Монтаж деталей рамочной магнитной антенны-самоделки является довольно несложной процедурой. Сначала сооружается крест из деревянных реек, на него в поперечном направлении прикрепляются дощечки с пропиленными канавками. На кресте монтируется петля для создания резонанса. Она должна состоять как минимум из 4 витков провода РГ213.

Кроме того, в планках крестовины, расположенных сверху, слева и справа сверлятся две дырки, где концы кабеля будут надежно закрепляться. Между ними необходимо пропилить три канавки. Габариты крестовой основы не столь важны, а вот боковая сторона коаксиала должна составлять ровно 67 сантиметров.

Рамка должна иметь сумму длин сторон, тождественную 1/10 волновой длины нижнего фм-диапазона или необходимой коротковолновой частоты. Однако, если радиосигнал достаточно мощный, то допустим периметр, равный 1/10 волновой длины верхнего фм-канала.

Если такую самодельную антенну планируется использовать в течение длительного периода (как на открытой местности, так и в помещении), лучше всего брать кабель, выполненный из технической меди с фольговой оплеткой (иногда подходит и отполированная до блеска трубка). В противном случае со временем хорошего радиоприема ожидать не приходится.

Для окрашивания лучше всего использовать краски, содержащие окислы металлов.

Что касается магнитной рамки, то для наиболее эффективного функционирования конструкции надо, чтобы потери в его полотне были адекватны сопротивлению всей системы.

Магнитные рамочные антенны с использованием коаксиального кабеля – современный улучшенный вариант обычных рамочных антенн, которые обеспечивают отличный прием радиосигнала главным образом в фм-диапазоне и имеют повышенную мобильность. Самостоятельно вполне рабочий экземпляр можно собрать, даже не проходя особой подготовки.

Видео

Опыты с магнитными рамочными антеннами

Опыты с магнитными рамочными антеннами

Александр Грачёв UA6AGW

В прошлом году мне в руки попал 6-ти метровый отрезок коаксиального кабеля. Еготочное название: «Кабель коаксиальный 1″гибкий LCFS 114-50 JA, RFS (15239211)». Он имеет очень небольшой вес, вместо внешней оплётки сплошную гофрированную трубу из безкислородной меди диаметром около 25 мм, центральный проводник – медная трубка
диаметром около 9 мм (см. фото). Это и подвигло меня взяться за постройку рамочной антенны. Об этом я и хочу рассказать.

Первая антенна была построена по схеме DF9IV. При диаметре около 2 м и такой же длине петли питания, выполненной из коаксиального кабеля, она очень хорошо работала на прием, но откровенно плохо на передачу, КСВ достигал 5-6.
Рабочая полоса по приему (на уровне –6 дБ) порядка 10 кГц. При этом она отлично подавляла электрические помехи, при определенной ориентации в пространстве подавление мешающей станции легко получалось более 20 дБ.

После некоторых размышлений я пришел к выводу, что причиной высокого КСВ является использование возбуждающим элементом внутреннего проводника с его относительно небольшим диаметром. Было принято решение внутренний проводник не использовать вовсе, оставив его в виде не замкнутого витка.

Настроечный конденсатор был припаян к внешнему экрану. Приемные характеристики изменились незначительно, менее выраженным стал минимум в диаграмме, стало заметно влияние окружающих предметов. Но на передачу мало что изменилось. Далее после прочтения очередной раз статьи Григорова, было решено снять внешнюю оплетку с кабеля рамки, а медь покрыть в два слоя лаком «ХВ» (более подходящего не нашлось, впрочем, он неплохо защищает медь от
окисления). И тут, наконец, появились первые положительные результаты. КСВ снизился до 1,5, было проведено около 20 местных связей. Антенна находилась на высоте 1,5 м и могла вращаться в вертикальной плоскости.

Читайте также:  Кабель ПУСП назначение

Для сравнения использовался диполь общей длиной 42,5 м, выполненный из полевого провода с симметричной линией питания из телефонной «лапши» длиной около 20 м (этакая антенна «нищего радиолюбителя»), расположенный на крыше 5-ти этажного дома на высоте около 3-х метров. Он работал на 40 и 80 метрах, запитанный через симметричное согласующее устройство – КСВ на обоих диапазонах = 1,0. К сожалению, антенны находились в разных QTH и не было
возможности провести прямое сравнение. Но опыт эксплуатации диполя в течение года позволял судить об эффективности рамки в первом приближении.

Теперь собственно о результатах: 1) КСВ около 1,5. 2) Все корреспонденты отмечали снижение (от 1 до 2-х балов) уровня моего сигнала, по сравнению с тем, с которым они меня обычно слышат на диполь.

Начавшиеся к этому времени дожди (как говорится: «через день-каждый день»), сделали невозможными дальнейшие антенные эксперименты. Главной причиной невозможности дальнейших испытаний стали постоянные пробои настроечного
конденсатора из-за возросшей влажности воздуха.

Я испробовал, пожалуй, все доступные мне варианты, применял подключение только статорных пластин, соединяя два КПЕ последовательно, применял конденсаторы из коаксиального кабеля, высоковольтные конденсаторы
– все это заканчивалось одним – пробоем. Не попробовал я только вакуумные конденсаторы, остановила их непомерно высокая стоимость.

И вот здесь пришла идея использовать ёмкость по отношению к внешнему экрану незадействованного внутреннего проводника. Попытка рассчитать необходимую длину кабеля по известной погонной ёмкости кабеля, не привела к достоверным результатам, поэтому был использован метод постепенного приближения.

Очень жаль было резать такой замечательный кабель, но «охота – пуще неволи». Схема соединений на рисунке. Для питания использовалась петля из коаксиального кабеля длиной 2 м, по схеме DF9IV, сам питающий 50-омный кабель был длиной 15 м. Можно было предполагать, что общая ёмкость получится в соответствии с формулой последовательно включенных конденсаторов,но настроечный конденсатор является как бы продолжением собственной ёмкости кабеля.
Для настройки использован конденсатор типа «бабочка» от УКВ аппаратуры.

Пробои полностью прекратились, антенна сохранила все основные параметры классической магнитной рамочной антенны, но стала однодиапазонной.

Основные результаты следующие: 1) КСВ порядка 1,5 (зависит от длины и формы питающей петли). 2) Магнитная антенна заметно проигрывает диполю (описан выше) при сопоставимой высоте подвеса. Опыты проводились в диапазоне 80 м.

Заняться дальнейшими опытами с магнитными антеннами меня подтолкнули статья К. Ротхаммеля во втором томе его книги, посвященная магнитным рамкам, и статья Владимира Тимофеевича Полякова о рамочно-лучевой или настоящей ЕН антенне, а для понимания процессов, происходящих в антеннах и вокруг них, оказалась очень полезной статья о ближнем поле антенн.

После прочтения статьи о рамочно-лучевой антенне у меня родилось несколько многообещающих проектов, но в настоящее время испытан только один, о нём и пойдёт речь. Схема антенны изображена на рисунке, внешний вид – на фото:

Все ниже перечисленные опыты проводились в диапазоне 40м. В первых опытах антенна была на высоте 1,5 м от земли. Испробованы различные способы подключения «дипольной» (ёмкостной) части антенны к рамке, но изображенный на рисунке мне показался оптимальным. Здесь предпринята попытка магнитную рамку, излучающую преимущественно магнитную составляющую, дооснастить элементами, излучающими в основном электрическую составляющую.

Можно на эту же антенну посмотреть иначе: катушка, включенная в середину диполя, как бы удлиняет его до необходимых размеров, и вместе с тем лучи, включенные параллельно настроечному конденсатору, обладают собственной емкостью (при указанных размерах порядка 30 — 40 пФ) и входят в общую ёмкость настроечного конденсатора.

Контур, образованный внутренним проводником и конденсатором, кроме того, что повышает уровень сигнала на приеме приблизительно вдвое, по видимому, сдвигает фазу тока собственно рамки, и обеспечивает необходимое фазовое согласование (попытка отключить его приводит к увеличению КСВ до 10 и более). Возможно, мои теоретические рассуждения не совсем верны, но как показали дальнейшие опыты, антенна в данной конфигурации работает.

Ещё при самых первых опытах был замечен интересный эффект – если при неподвижной дипольной части повернуть
рамку на 90 градусов – уровень сигнала по приему падает приблизительно на 10 — 15дБ, а на 180 градусов – прием падает едва ли не до нуля. Хотя логично было бы предположить, что при повороте на 90 градусов диаграммы направленности «дипольной» части и рамки совпадут, но видимо не всё так просто.

Был изготовлен промежуточный вариант антенны, способной поворачиваться вокруг своей оси, с целью выяснить диаграмму направленности, она оказалась такой же, как и у классической рамки. Питание антенны осуществлялось той же петлей связи, что и в первых опытах. В настоящее время антенна поднята на высоту 3-х метров, лучи идут параллельно земле.

1) КСВ = 1.0 на частоте 7050 кГц, 1.5 на 7000кГц, 1,1 на 7100кГц.
2) Антенна не требует перестройки по диапазону. С помощью конденсаторов П-контура трансивера возможна некоторая подстройка антенны в случае необходимости.
3) Антенна весьма компактна.

На расстоянии до 1000 км рамка и диполь имеют приблизительно одинаковую эффективность, а на расстоянии более 1000 км рамка работает заметно лучше волнового диполя при одинаковой высоте подвеса, при этом рамка вчетверо
меньше диполя. Диаграмма направленности близка к круговой, минимумы мало заметны. Проведено около ста связей с 1;2;3;4;5;6;7;9 районами бывшего СССР.

Отмечен интересный эффект – оценка силы сигнала в большинстве случаев оставалась приблизительно одинаковой и при расстоянии до корреспондента 300 км и 3000км, на диполе такого не наблюдалось. Интересна реакция операторов,
когда я сообщал, на чем работаю – изумление, что на этом можно работать! Все опыты проведены на самодельном SDR трансивере с выходной мощность 100 Вт.

Радио-как хобби

Делаем рамочную активную антенну для простых коротковолновых радиоприемников.

Есть ли возможность слушать эфир людям, у которых нет места для установки больших, полноразмерных антенн? Один из выходов- рамочная активная антенна, установленная прямо на столе, возле радиоприемника.

О практическом изготовлении подобной антенны и будет рассказано в этой статье…

Итак, малогабаритная рамочная активная антенна, это антенна состоящая из одного или нескольких витков медного провода ( трубки) или даже коаксиального кабеля. В сети есть предостаточно примеров таких антенн.

Свою антенну я изготовил в виде вертикальной конструкции, которая устанавливается на столе возле радиоприемника. Рамочная активная антенна представляет собой этакую большую катушку индуктивности, изготовлена из медного провода диаметром 1,2 мм и содержит четыре витка. Количество витков выбрано наобум)). Диаметр изготовленной рамочной антенны примерно 23 см:

Для уменьшения собственной емкости витки антенны намотаны с шагом 10 мм. Для поддержания постоянства шага намотки, а также придания всей конструкции необходимой жесткости применены промежуточные распорки, изготовленные из стеклотекстолита толщиной 2 мм. Эскиз распорок приводится ниже:

Так выглядит промежуточная распорка в антенне:

Для придания устойчивости все этой конструкции применены опорные стойки, также изготовленные из стеклотекстолита,и которые служат как бы ножками антенны:

Медный провод продевается в соответствующие отверствия распорок и стоек, и фиксируется в них капелькой цианакрилатного клея.

Так выглядит стойка в изготовленном экземпляре антенны:

Общий вид изготовленной антенны:

Ради интереса подключил изготовленную рамочную антенну к антенному анализатору АА-54.

Обнаружился собственный резонанс антенны на частоте 14,4 МГц.

На фото ниже дисплей антенного анализатора АА-54 в момент измерения параметров рамочной антенны на частоте резонанса:

Как видим, импеданс антенны на частоте 14,4 МГц составляет 13,5 Ом, активное сопротивление-7,3 Ома, реактивное сопротивление относительно небольшое-минус 11,4 Ома и носит емкостной характер.

Индуктивность рамочной антенны ( а она, собственно, и представляет собой катушку индуктивности) составила 7,2 мкГн.

Это все, что касается изготовления и параметров собственно рамочной антенны.

Но, поскольку антенна активная, значит в ее составе имеется и антенный усилитель.

При выборе схемы антенного усилителя руководствовался принципом подобрать что-либо не слишком заумное и сложное, и простое в изготовлении.

Гугл, как всегда, вывалил гору схем)) Не долго думая, выбрал одну из них, которая мне показалась интересной.

Схема этого антенного усилителя была опубликована еще где-то в начале 2000-х годов в одном из зарубежных журналов. Мне этот усилитель показался интересным с той точки зрения, что он имеет симметричный вход-как раз подходящий для моей рамочной антенны.

Принципиальная схема антенного усилителя:

В оригинале в этом усилителе были применены транзисторы серии BF- что-то типа BF4**.

В наличии таких не оказалось, поэтому собрал усилитель из того, что было под рукой-2N3904, 2N3906, S9013.

Собственно, усилительный каскад собран на транзисторах VT1VT2. На транзисторе VT3 собран эмиттерный повторитель для согласования высокого выходного сопротивления усилителя с относительно невысоким входным сопротивлением радиоприемников.

Усилитель питается напряжением 6 В. Режимы работы транзисторов устанавливаются подбором резистора R3. Напряжения на электродах транзисторов указаны на схеме.

Усилитель заработал практически сразу. Попробовал было установить в этом усилителе транзисторы КТ315,Кт361-но эффективность работы его сразу заметно ухудшилась, поэтому от такого варианта отказался. Антенный усилитель я собрал на монтажной плате, но, подготовил и печатную плату для него:

В качестве приемника для натурных испытаний активной рамочной антенны с усилителем был выбран приемник прямого преобразования на микросборке 2ТС613Б.

Подключив выход антенного усилителя ко входу приемника и включив питание, сразу отметил увеличение уровня шума. Это и не удивительно-антенный усилитель вносит свой вклад…

Последним этапом испытаний было подключение собственно рамочной антенны ко входу антенного усилителя и попробовать принять какие-либо сигналы с эфира..

И это удалось! Хорошо слышны много станций работающих с однополосной модуляцией на диапазоне 40 м. Понятно, что станции слышны не так громко как на полноразмерную антенну. Да и нельзя сравнивать нормальную антенну с рамочной антенной, находящейся рядом с приемником. Также при работе активной рамочной антенны наблюдается несколько повышенный уровень шумов. С этим нужно мириться- это плата за малогабаритность. Также желательно такую антенну располагать подальше от всевозможных источников помех- зарядки, энергосберегающие лампочки, сетевое оборудование и т. п.

Выводы: такая антенна вполне себе имеет право на жизнь, станций принимает достаточно много. Для тех, у кого нет возможности повесить большую, длинную антенну, это может быть выходом из ситуации.

Видео демонстрации работы рамочной активной антенны на диапазоне 7 МГц:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: