Плавный пуск водяного насоса

Зачем нужен плавный пуск насоса?

Есть множество причин для включения бытовых насосов через устройство плавного пуска.

Обычно погружной или поверхностный насос подключают через электромеханическое или электронное реле, блок автоматики или магнитный пускатель. Во всех перечисленных случаях сетевое напряжение подаётся на насос путем замыкания контактов, то есть через прямое подключение. Это означает, что на обмотки статора электродвигателя мы подаём полное сетевое напряжение, а ротор в это время ещё не вращается. Это приводит к появлению мгновенного мощного вращательного момента на роторе электродвигателя насоса.

Такая схема подключения характеризуется следующими явлениями при запуске насоса:

Скачки тока через статор (соответственно, и через подводящие провода), так как ротор короткозамкнутый.
В упрощённом понимании мы имеем короткое замыкание на вторичной обмотке трансформатора. По нашему опыту, в зависимости от насоса, производителя и нагрузки на валу, импульсный пусковой ток может превышать рабочий ток от 4 до 8, а на отдельных экземплярах и до 12 раз.

Резкое появление вращающего момента на валу.
Это оказывает негативное воздействие на пусковую и рабочую обмотки статора, подшипники, керамические и резиновые уплотнители, существенно увеличивая их износ и уменьшая ресурс службы.

Появление резкого вращающего момента на валу приводит к резкому повороту корпуса скважинного насоса относительно трубопроводной системы.
Мы неоднократно бывали свидетелями того, как из-за этого скважинный насос отсоединялся от трубопроводов и падал в скважину. В случае насосной станции на базе поверхностного насоса, установленного на платформу гидроаккумулятора, это приводит к разбалтыванию крепёжных гаек и разрушению сварных точек и швов гидроаккумулятора. Также при прямом включении насоса сокращается срок службы водопроводной и запорной арматуры, особенно в местах их соединения.

Принято считать, что гидроаккумулятор убирает гидроудары в системе водоснабжения.
Это действительно так, но гидроудары исчезают в трубопроводах только начиная от места подключения гидроаккумулятора. В промежутке между насосом и гидроаккумулятором при прямом подключении насоса гидроудар остаётся. В итоге на промежутке от насоса до гидроаккумулятора мы имеем все последствия гидроудара на все части насоса и на трубопроводную систему.

В системах фильтрации воды гидроудары, возникающие при прямом подключении насоса, значительно сокращают срок службы фильтрующих элементов.

Если локальная электросеть слабая, то о запуске насоса мощностью более 1кВт при прямом подключении узнают и Ваши соседи по резкому спаду напряжения в сети в момент включения насоса.
Если локальная сеть КРАЙНЕ СЛАБА, и Ваш сосед тоже получает удовольствие от жизни, подключив к сети все доступные электрические приборы, то скважинный насос, погружённый на большую глубину, может и не запуститься. Такой скачок напряжения может вывести из строя электронные приборы, подключённые в сеть. Известны случаи, когда при запуске насоса выходил из строя напичканный электроникой дорогостоящий холодильник.

Чем чаще включается насос, тем меньше его ресурс службы.
Частые запуски через прямое подключение приводят к выходу из строя пластмассовых муфт скважинных насосов, соединяющих электродвигатель с насосной частью.

Мы с Вами прошлись по проблемам, которые возникают при запуске насоса без устройства плавного пуска (УПП).

Необходимо отметить, что и при выключении насоса без УПП с прямой схемой подключенияесть негативные моменты:

При выключении насоса также происходит гидроудар в системе, но теперь уже по причине резкого снижения вращающего момента на валу насоса, что равносильно созданию мгновенного разряжения.

Резкое снижение вращающего момента на валу насоса также приводит к повороту корпуса насоса, но в противоположную сторону.
Вспомним о трубопроводах и резьбовых соединениях насоса.

В обычных бытовых насосах электродвигатели являются асинхронными и имеют явно выраженный индуктивный характер.
Если мы резко прерываем подачу тока через индуктивную нагрузку, то происходит резкий скачок напряжения на этой нагрузке по причине непрерывности тока. Да, мы размыкаем контакт, и всё высокое напряжение должно остаться на стороне насоса. Но при любом механическом размыкании контакта присутствует так называемый «дребезг контактов», и импульсы высокого напряжения попадают в сеть, а значит попадают и в приборы, подключенные в это время к сети.

Таким образом, при прямом подключении насоса происходит повышенный износ механических и электрических частей насоса (как при запуске, так и при отключении). Также страдают приборы, включенную в эту же сеть, и уменьшается ресурс работы систем фильтрации и водопроводной арматуры.

  • PDF. Инструкция на устройство плавного пуска насоса «EXTRA Акваконтроль УПП-2,2С»
  • JPG. Схема подключения УПП-2,2С после механического реле типа РДМ
  • JPG. Схема управления УПП-2,2С с помощью сигнального кабеля
  • ВИДЕО: УПП-2,2С. Устройство плавного пуска. Выпуск #1: тестирование (26 мин)
  • ВИДЕО: УПП-2,2С. Устройство плавного пуска. Выпуск #2: защита по напряжению (19 мин)

Использование устройства плавного пуска («Акваконтроль УПП-2,2С») позволяет сгладить большинство описанных выше недостатков. В устройстве УПП-2,2С реализована специально рассчитанная кривая нарастания напряжения на насосе, позволяющая с одной стороны гарантированно запустить насос в самых неблагоприятных условиях эксплуатации, а с другой стороны плавно увеличить частоту вращения вала. Также в этот прибор встроена защита от низкого и высокого напряжения сети, чтобы оградить насос от экстремальных режимов работы и включения.

В УПП-2,2С используется фазное симисторное управление. В момент пуска на насос подается часть сетевого напряжения, которое создает вращающий момент, достаточный для гарантированного запуска насоса. По мере раскрутки ротора плавно увеличивается напряжение на насосе до момента полной подачи напряжения. После этого включается реле и отключается симистор. В итоге, при использовании УПП-2,2С насос подключён к сети через контакты реле, то есть так же, как и при прямом подключении. Но в течение 3,2 секунд (это время плавного пуска) напряжение на насос подаётся через симистор, что обеспечивает «мягкий пуск», без искр на контактах реле.

При таком запуске максимальный пусковой ток превышает рабочий не более чем в 2,0-2,5 раза вместо 5-8 раз. Используя УПП-2,2С, мы в 2,5-3 раза уменьшаем пусковые нагрузки на насос и во столько же раз продлеваем жизнь насосу, обеспечиваем более комфортную работу приборов, подключённых к электрической сети. УПП-2,2С можно назвать устройством с ресурсосберегающей технологией.

Как сделать плавный пуск воды из скважины и защиту системы водоснабжения

О том, как классно иметь дома скважину знают все. Это удобно и эффективно, пока ничего не сломается. А проблемы рано или поздно дадут о себе знать, и по закону подлости, в самый неподходящий момент. Отказываться от скважины и копать колодец — не вариант. Лучше предотвратить возможные аварии и защититься от них заранее.

Какой вариант водоснабжения лучше для частного дома

Вода со скважины поднимается специальным глубинным насосом. В зависимости от конструкции водоснабжения, она закачивается в специальный резервуар — гидроаккумулятор или подается прямо в водопровод.

Система с резервуаром больше подходит для частного дома. Например, для семьи из 3-4 человек в среднем хватает 70 л на день. Для такого водоснабжения понадобится: 50-литровый гидроаккумулятор на соответствующий объем, реле давления и насос со скоростью перекачивания 1 м3/ч. Все вместе будет стоить 100$.

Но, для отеля на 12 номеров такой вариант — нерентабельный, потому что понадобится резервуар размером как целый номер. 500-литровый гидроаккумулятор обойдется в 400$ и будет занимать много полезного пространства. Дешевле и эффективнее купить частотный преобразователь за 150-200$.

Водоснабжение с частотным преобразователем

Частотник регулирует обороты электромотора в зависимости от давления в водопроводе. Это работает по такому принципу:

  1. На водопроводную трубу ставится реле давления, подключенное к частотному преобразователю;
  2. Система включается в сеть и частотник плавно меняет характеристики тока насоса;
  3. За счет этого он постепенно выходит на номинальные обороты;
  4. При заполнении в трубах растет давление, и реле подает сигнал на частотник, уменьшающий скорость подкачки.

Какие преимущества такой системы?

Удобство для пользователя

Например, когда посетитель в отельном номере принимает душ, давление в водопроводе падает, и насос работает быстрее. Когда кран закручен, электромотор работает на малых оборотах, чтобы вода не стекала с труб. Так, если Вы открутите кран, она мгновенно начнет течь под нужным напором.

При включении каждый электродвигатель потребляет в 3-4 раза больше электричества — возникает пусковой ток. В этот момент сетевая нагрузка составляет соответственно 300-400% от номинальной. Пик держится доли секунды, пока электромотор не выйдет на нормальные обороты. Чем это опасно?

Вернемся к нашему отелю. Чтобы перебои с электроэнергией не оставили посетителей без благ цивилизации, любой ответственный хозяин установит генератор. Предположим, что мощность резервного источника будет 20 кВт, из которых 10 кВт сразу уйдет на освещение, кондиционеры, розетки с ноутбуками и т.д.

Мощность насоса — 5 кВт, но так как его пусковой ток равен 3 номинальным, на старте он возьмет все 15 кВт. Генератор может предоставить только 10 кВт, но электродвигателю этого будет мало. Такая нагрузка выведет генератор из строя, и в результате отель останется без света и воды.

Частотный преобразователь снимает пусковой ток. Если бы в предыдущем примере был частотник, нагрузка на генератор не превысила бы 15 кВт и он бы работал в безопасном режиме.

Длительный срок службы насоса

Пусковой ток вредит не только сети, но и электромотору. Каждый раз при включении он работает в нештатном режиме и кратковременно выдерживает нагрузку, на которую не рассчитан. Резкие пуски и остановки увеличивают износ электромотора. Частотный преобразователь делает плавную остановку, чем увеличивает срок эксплуатации в два раза.

Подобрать частотный преобразователь для скважинного насоса можно самостоятельно в интернет магазине компании АксиомПлюс (которая специализируется на подобном электрооборудовании любой сложности) или там же связаться по контактным номерам со специалистом.

Устройство плавного пуска для частного дома

УПП отличается от частотника тем, что оно не регулирует обороты, а только плавно включает и выключает электромотор. Чаще применяется для маломощных аналогов до 2 кВт. Синхронизируется с реле давления. Принцип срабатывания аналогичный частотнику: давление в трубах падает — насосный мотор включается, если поднимается до критического уровня — плавно выключается.

Что Вам даст УПП:

  • Автоматическую подкачку — трубы всегда будут наполнены, а при откручивании крана вода мгновенно потечет под нужным напором;
  • Отсутствие пусковых токов — не будут выбивать автоматы при каждом включении;
  • Увеличенный срок службы электромотора.

Система водоснабжения с мембранным баком

Мы уже выяснили что для небольшого дома такая система обойдется дешевле предыдущей. Учитывая, что стоимость 50-литрового гидробака 60$ (ссылка на каталог гидроаккумуляторов с ценами), покупать вместо него частотник за 150$ нет смысла.

Принцип работы системы с резервуаром простой:

  1. Вода закачивается в бак, чем увеличивает давление воздуха на мембрану;
  2. По достижению выставленного уровня срабатывает реле и отключает насос;
  3. Когда Вы откроете кран, гидробак начнет истощаться;
  4. Внутри резервуара упадет давление, на что среагирует реле и снова сцепит контакты.

Есть ли смысл брать бак большего объема?

Разница в стоимости между баками разной емкости большая. Например, у производителя Roda 50-литровый бак стоит 60$, а 80-литровый — 100$. Исходя из этого возникает вопрос: на что влияет емкость бака?

С меньшим гидробаком насос будет чаще срабатывать, чтобы закачать воду. На производительность водоснабжения это никак не повлияет. В частном доме Вы не почувствуете разницу, будет гидробак на 24л, 50л или 100л — из крана будет течь одинаково.

Но, как только пропадет электричество — проявится разница. Вода не будет набираться, но гидробак останется заполненным. Она продолжит поступать в трубы под давлением. Но, мембрана «выдавит» не полную емкость. Так, например, 50-литровый бак самостоятельно выдаст 40л воды, а 100-литровый — 80л.

Сложность в том, что неизвестно, сколько времени у Вас не будет света — час, два или сутки. В этот временной промежуток вода не будет поступать в бак, и чем больше ее останется внутри, тем лучше. Поэтому, выбирайте объем по своему расходу. Для семьи из 3-4 человек хватит 50-литрового бака. 40 литров в среднем хватит на полдня, а при экономном потреблении — на сутки.

УПП для системы с гидроаккумулятором

В данной схеме водоснабжения не регулируются обороты двигателя. Он включается, заполняет бак и отключается, повторяя это систематически. Но, как быть с пусковыми токами?

В частных домах ставят маломощные насосы — до 1,5 кВт. Тем не менее на старте они потребляют 4 кВт. На первый взгляд, это не так и много. Но, учитывая что в доме пользуются и другой электротехникой (холодильник, кондиционер, электроплита), пиковая нагрузка достигнет 6-7 кВт.

Если у Вас стоит автомат на 25А — он расцепит сеть. И вся техника перестанет работать. Если это случится, когда Вас не будет дома, потечет холодильник и зальет кухню. При повторном включении история будет повторяться.

Чтобы предотвратить «кухонный апокалипсис», нужно убрать пусковые токи. Сделать это можно с помощью уже известного Вам УПП.

Читайте также:  Как установить замок на электрощит?

Есть ли смысл для водоснабжения стоимостью 100$ покупать УПП за 160$? Конечно — нет, потому что, в случае поломки дешевле купить новый насос, чем защищать этот. Но, с другой стороны, если у Вас стоит качественный итальянец за 300$, то лучше все-таки его защитить. Так он прослужит на 5 лет дольше, и скачков в сети не будет. Покупать УПП или нет — решать Вам, этот вопрос больше зависит от рентабельности покупки.

Важно! УПП увеличит срок эксплуатации, но не защитит от неправильной работы и скачков электричества.

Как защитить насос

В ходе эксплуатации он может столкнуться с рядом проблем: сухой ход, попадание песка, поломка винта и т.д. При каждой нештатной ситуации, электромотор работает неправильно, что может вывести его из строя. Самый простой способ предотвратить поломку — поставить реле защиты электродвигателя, его еще называют универсальный блок защиты (УБЗ).

От чего защищает УБЗ?

Блок защиты срабатывает в двух ситуациях:

  • При возникновении проблемы в насосе, например при сухом ходе, когда электромотор начинает неправильно потреблять электричество. Реле фиксирует это и отключает его от сети;
  • Если авария случилась в самой электросети, из-за чего, например, начались скачки напряжения. Реле чувствует их и расцепляет контакты.

Дорогие модели уже идут с защитой от сухого хода и других нештатных ситуаций. Набор функций можно изучить в инструкции. Если отсутствует какая-либо защита, нужно поставить УБЗ. Тем более его стоимость небольшая — от 20$.

УБЗ защитит от перепадов напряжения, перегрузки сети, но не от короткого замыкания, которое может «убить» не только электромотор, но и УПП, реле установленные на линии. Чтобы этого не произошло, поставьте автоматический выключатель.

От коротких замыканий защитит только автомат

Выбирайте его по мощности насоса. Номинал автомата указывается в амперах. Чтобы свести ватты и амперы к единственной величине воспользуйтесь одной из двух формул:

  • для 220-вольтовой сети — I = P/U;
  • для 380-вольтовой — I = P/(U√3 cos φ).
  • I — номинальный ток (А);
  • P — нагрузка потребителя на сеть (Вт);
  • U — напряжение сети (В);
  • cos φ — коэффициент мощности (указывается в техническом паспорте).

Например, если у вас «однофазник» на 1,5 кВт, при включении к нему будет течь ток:

1500Вт / 220В = 6,8А.

Для удобства можете воспользоваться таблицей подбора автоматов

В данном случае лучше поставить автомат на 8А, чем на 6А. Если Вы поставите более слабый автомат, от нагревания будет срабатывать термомагнитный расцепитель.

Стоит такой автомат 3-7$. Учитывая, что он защищает электротехники, как минимум, на сотню долларов, это — выгодное вложение.

Вы защитите водоснабжение от короткого замыкания, но что если случится утечка тока? Автомат от нее не защищает, а УБЗ ее банально не увидит. Значит, нужно поставить УЗО.

УЗО для защиты Вашего кошелька

Утечки тока случаются из ряда причин:

  • Неправильно подобран кабель. Подключать нужно специальным глубинным полиэтиленовым кабелем. Если вместо него кинуть кабель из ПВХ, изоляция продержится год или два, но потом разгерметизируется и оголенный провод окажется в воде;
  • Некачественный монтаж, например, в месте удлинения провод потеряет герметичность и на оголенный участок попадет жидкость;
  • Разгерметизация корпуса из-за механических повреждений, плохой сборки и т.д. Из-за этого вода попадет на токоведущие части и случится утечка.

Чем она опасна? На первый взгляд, ничем, так как само водоснабжение заземлено. Техника не испортится и Вас не ударит током. Но, из-за аварии электричество будет уходить в землю, что проявится в платежках. Притом, Вы сами можете не знать в чем причина, но платить будете в разы больше. Чтобы не рисковать, застрахуйте кошелек и поставьте УЗО. Оно стоит всего 10$. Если не поставите, в случае аварии будете терять 20-30$ каждый месяц.

Предположим, что у Вас кабель подобран правильно, монтаж сделан идеально, а насос собирали под микроскопом дюжина ученых, тогда не ставьте УЗО — оно Вам не понадобится. Во всяком случае, никакие нормы не говорят о том, что там необходимо УЗО. Это прежде всего страховка, и ставить его или нет — решайте сами.

Если Вы решили ставить и УЗО, и автомат, установите лучше дифавтомат. По сути, это два устройства в одном корпусе — защищает одновременно от коротких замыканий и утечек. По цене выйдет то же самое, но проще монтируется и занимает меньше места в щитке.

Дифавтомат безопасно расцепит фазу в случае аварии. Но, не стоит забывать о безопасном включении и выключении и в базовом режиме. В этом Вам поможет контактор.

Для какого насоса нужен контактор?

В бытовых скважинах применяются маломощные аналоги и контакторы на них не ставят. Насос подключается напрямую к реле давления, а оно уже коммутирует цепь.

Что будет, если соединить линию на высокой нагрузке, с учетом пусковых токов, скажем так, 3-4 кВт? Контактная поверхность перегреется и начнет оплавлять корпус. Хуже, если возникнет электрическая дуга. История закончится коротким замыкание и пожаром.

При номинальной мощности 2 кВт или больше, подключать напрямую — опасно!

Контактная поверхность реле не рассчитана на высокую нагрузку. Установите контактор — это простое устройство, работающее по такому принципу:

  1. Реле подает слаботочный сигнал на контактор;
  2. Контактор коммутирует цепь с высокой нагрузкой;
  3. При повторном сигнале, разрывает цепь.

Контактор гасит электрическую дугу и берет на себя нагрузку при коммутации цепи. Даже если номинальная мощность всего 1 кВт, постоянная нагрузка при включениях увеличит износ расцепителя в реле. Чтобы этого не произошло, поставьте минимальный контактор (пускатель) на 6А. Подойдет даже самый дешевый стоимостью в пару долларов. Подобрать можно там же — в АксиомПлюс.

Что будет, если не защитить систему подачи воды?

Чтобы водоснабжение дома было бесперебойным и эффективным, ему все же нужна защита. Бесспорно, насос — главный элемент в системе, но каким бы дорогим и качественным он не был, его ничего не спасет от короткого замыкания.

Аварии случаются не только под водой, но и в погружном кабеле и даже сети дома. Сложно предугадать, что сломается первым. Чтобы не играть в лотерею, лучше защититесь от всего и сразу.

Анализ технических решений: устройства плавного пуска, частотно-регулируемый привод или параллельная схема управления центробежными насосами

ООО «АББ», г. Москва

Энергоэффективные технологии – одно из приоритетных направлений компании АББ. Самые современные методы и разработки для обеспечения наиболее эффективной эксплуатации нашли свое применение в современном оборудовании компании АББ – преобразователях частоты и устройствах плавного пуска*, которые широко применяются для управления приводными механизмами насосных установок и позволяют существенно сократить потребление электроэнергии на объектах водоподготовки и водоочистки.

Часто используемый механический способ управления подачей насоса, или метод дросселирования, является крайне неэффективным с точки зрения экономии электроэнергии. В связи с этим возникает вопрос: какое из двух технических решений является самым экономичным методом снижения потребления энергии – частотно-регулируемые приводы или циклическое управление (рис. 1)? По существу, характеристика гидравлической системы, в которой используется центробежный насос, является определяющим фактором при выборе одного или другого метода управления.

Циклическое управление является интересной альтернативой частотно-регулируемому приводу, несмотря на утрату гибкости при регулировании расхода. Другими словами, устройство плавного пуска считается подходящей и конкурентоспособной технологией, защищающей асинхронный электродвигатель от электрических перегрузок, механических ударов и вибрации при пуске, а также от гидравлических ударов в трубопроводной системе, возникающих при останове насоса. Кроме того, электродвигатель эксплуатируется в оптимальной рабочей точке и выключается на остальное время.

В следующих разделах приводится анализ энергосбережения и окупаемости решений управления с частотным регулированием и циклического управления для двух центробежных насосов (90 кВт и 350 кВт).

Типовая насосная система

Преобразователи частоты имеют высокий КПД (ηconv), который естественным образом уменьшается, когда происходит снижение выходной мощности по отношению к номинальному значению. При работе УПП в установившемся режиме, то есть при активации байпаса, КПД устройств плавного пуска составляет практически 100 %. Следует отметить, что КПД устройств плавного пуска заметно снижается с увеличением количества пусков в час и сокращением интервалов рабочего времени, что обусловлено дополнительными потерями Джоуля при пуске и останове электро­двигателя, а также работой тиристоров (рис. 5).

Принятые недавно более строгие стандарты (классы IE) гарантируют повышенный КПД электродвигателя – при его работе под нагрузкой [3, 4] (рис. 6 и 7). На КПД электродвигателя (в строгой зависимости от класса) влияет использование либо преобразователя частоты, либо устройства плавного пуска: КПД снижается при питании от быстродействующего выходного инвертора ПЧ вследствие наличия гармонических искажений по току и напряжению, но не изменяется при питании от УПП после окончания переходного процесса разгона благодаря синусоидальной форме напряжения на выходе устройства.

Рис. 6. Влияние класса энергоэффективности электродвигателя на КПД насоса

Рис. 7. Изменение КПД электродвигателя с гидравлической нагрузкой

Влияние изменения характеристик компонентов системы, класса энергоэффективности электродвигателя и гармонических потерь в реальной системе приведено в табл. 2.

Энергосбережение, достигнутое при использовании частотного и циклического управления в насосных системах 90 кВт и 350 кВт, показано на рис. 8 и 9. В системах с преобладанием напора на преодоление трения (? = 5 %) частотное управление обеспечивает более высокую экономию энергии практически во всем рабочем диапазоне (от 7 до 98 %) для обеих насосных систем. В случае насоса 90 кВт и в системе с преобладанием статического напора (? = 50 %) циклическое управление является лучшим техническим решением по сравнению с использованием частотного преобразователя для всех рабочих точек. Преобразователь частоты обеспечивает чуть более высокую экономию энергии для насоса мощностью 350 кВт, но только в диапазоне от 75 до 92 % производительности насоса. При рассмотрении комбинированной гидравлической системы (? = 25 %), управление посредством частотно-регулируемого привода позволяет получить более высокую экономию электроэнергии только для насосов с производительностью выше 28 % (для системы 90 кВт) и 24 % (для системы 350 кВт). В действительности, самая высокая экономия энергии при использовании частотного управления наблюдается в диапазоне производительности насоса от 15 до 20 %.

В отличие от преобразователей частоты, в которых присутствуют потери на полупроводниковых компонентах при номинальном режиме работы, устройства плавного пуска, в этом случае, работают через байпасный контактор, таким образом тиристоры не задействованы (рис. 10). И следовательно, нет дополнительных тепловых потерь. Эксплуатационные и системные характеристики, при которых предпочтителен выбор того или иного способа управления для регулирования производительности насоса, приведены на рис. 11**.

Одним из важнейших факторов для заказчиков является расчет окупаемости инвестиций, в которые входят дополнительные расходы в связи с простоем оборудования во время монтажа и ввода в эксплуатацию устройства плавного пуска.

Стоимость преобразователя частоты в три раза выше стоимости устройства плавного пуска для насосов с номинальной мощностью до 25 кВт, а для насосов 350 кВт – в пять раз [6]. Общие начальные инвестиции при частотном регулировании или циклическом управлении рассчитываются как сумма стоимости частотного преобразователя или устройства плавного пуска и плюс процентная доля расходов, связанных с простоем оборудования, по отношению к расходам, затраченным на протяжении всего жизненного цикла работы технологической линии [7].

Для частотных преобразователей и устройств плавного пуска эта доля составляет 7,5 %.

Стоимость индивидуальных компонентов может различаться по нескольким причинам. Прежде всего, следует отметить, что низковольтные частотные преобразователи чаще применяются при продолжительном режиме включения электродвигателя, а не в режиме пуска/останова, и обеспечивают более точное управление. Однако биполярные транзисторы с изолированным затвором (IGBT), применяемые в частотных преобразователях, требуют поддержания определенного температурного режима и охлаждения, что делает их достаточно дорогостоящими элементами и соответственно повышает стоимость частотных преобразователей по сравнению с устройствами плавного пуска такой же номинальной мощности. В устройствах плавного пуска полупроводниковые силовые элементы – тиристоры – отрабатывают только режимы пуска и останова со средним временем каждого режима около 15 секунд. Стоит отметить, что недорогие и надежные тиристоры не требуют постоянного принудительного охлаждения.

Период окупаемости для преобразователей частоты и циклического управления расходом показан на рис. 12 и 13 для электродвигателей 90 кВт и 350 кВт для трех гидравлических систем: ? = 5 %, 25 % и 50 %.

Во многих гидравлических системах оптимальную экономию электроэнергии с хорошей окупаемостью капиталовложений можно получить путем применения параллельной схемы управления насосами***, в которой используются как преобразователи частоты, так и устройства плавного пуска.

Рис. 14. Решение для системы с четырьмя параллельными насосами
(гидравлическая система с преобладанием напора на преодоление трения)

В гидравлических системах с преобладанием напора на преодоление трения (? = 5 %) и с четырьмя параллельными насосами – каждый насос с номинальной мощностью 350 кВт (2500 м куб./ч) – оптимально использовать два преобразователя частоты и два устройства плавного пуска (рис. 14). В схеме, обеспечивающей наилучшее решение по окупаемости и гибкости управления, два насоса, 1 и 2, управляются устройствами плавного пуска, а насосы 3 и 4 – преобразователями частоты (см. табл. 3). Насосы с устройством плавного пуска работают с максимальной производительностью. Увеличив частоту вращения насосов, управляемых преобразователями частоты, до номинальной можно обеспечить максимальную производительность системы. В смешанной гидравлической системе (гидравлическая система со статическим напором/с преобладанием напора для преодоления трения) (? = 25 %), схема, позволяющая получить оптимальное решение с точки зрения окупаемости инвестиций и гибкости управления, представляет собой три насоса, первые два из которых управляются устройствами плавного пуска, а третий насос – преобразователем частоты (см. рис. 15 и табл. 5).

Читайте также:  Как проверить (прозвонить) ТЭН?

Для обеих систем начальные инвестиции по закупке устройств плавного пуска и преобразователей частоты трансформируются в экономическую прибыль менее чем за 1,5 года при условии, что регулируемый расход составляет менее 80 % от общей производительности (рис. 16).

Анализ эффективности систем частотного и циклического регулирования расхода был проведен для двух центробежных насосов (90 кВт и 350 кВт) с двигателями до 1000 В. Полученные результаты свидетельствуют о том, что управление посредством частотного регулирования является наилучшим решением в гидравлических системах с преобладанием напора на преодоление потерь на трение (транспортировка жидкости без разности высот в случае использования циркуляционных насосов). В системах с преобладанием статического напора рекомендуется использовать циклическое управление. Следует избегать применения преобразователей частоты в системах с пологими характеристиками насоса и нагрузки из-за риска нестабильности и поломки [9].

Устройства плавного пуска являются наиболее перспективным техническим решением для установок водоочистки и водоотведения, в которых необходимо осуществлять включение/выключение насоса для откачки жидкости из коллекторов и последующее перемещение сточных вод на очистные сооружения. Устройства плавного пуска отличаются высокой надежностью и имеют встроенные функции для устранения гидроударов как при пуске, так и при останове системы. Однако максимального энергосбережения и минимального периода окупаемости для широкого ряда гидравлических систем можно достичь путем применения параллельных схем управлением насосами, в которых используется комбинация пре­образователей частоты и устройств плавного пуска. Опираясь на ноу-хау в области автоматизации и широкий ассортимент низковольтного оборудования для автоматизации, компания АББ предлагает и другие решения для эффективного использования энергии в самых различных областях применения.

______________________________________
* Устройства плавного пуска регулируют уровень напряжения, подаваемого на электродвигатель, за счет чего обеспечивается плавный запуск и останов привода.

** При переводе экономии энергии в процентах (в отношении фиксированной скорости и дросселирования) в показатель экономической эффективности предполагается, что насос работает 8760 часов в год (330 x 24) при цене 0,065 долл. США за 1 кВт-ч электричества [5].

*** Для оптимального регулирования расхода в параллельных схемах работает один насос до тех пор, пока не будет достигнута максимальная производительность, после чего гидравлическая нагрузка разделяется на два одновременно работающих насоса [8]. При достижении второй контрольной точки активируются три насоса и т.д.

Статья опубликована в журнале «ИСУП», № 6(36)_2011

Станции управления насосами

На базе преобразователей частоты серии ES024 компания «Эффективные Системы» производит станции управления , способные объединять в единую систему до 7 насосов номинальной мощностью от 1,5 до 315 кВт, номинальным напряжением 380 В. По техническому заданию заказчика возможно изготовление станций управления иных номинальных мощностей и напряжений.

В зависимости от потребности заказчика в станциях управления насосами производства компании «Эффективные Системы» могут быть реализованы следующие функции:

  1. Настройка до 8 различных заданных уровней давления, которые необходимо поддерживать, распределенных по времени суток;
  2. Возможность перехода системы в «спящий режим» при отсутствии водоразбора или при малом водоразборе, что позволяет существенно снизить энергопотребление;
  3. Периодическая смена насосов, позволяющая обеспечить их равномерный износ и избежать ржавления резервных насосов;
  4. Управление дренажными насосами, позволяющее контролировать уровень сточных вод;
  5. Определение уровня жидкости и управление наполнением резервуара, позволяющие запускать насос в зависимости от количества жидкости в резервуаре и восполнять ее расход с заданным уровнем подачи;
  6. Сигнализация о повышенном и пониженном давлении в трубопроводе;
  7. Занесение в память токовых параметров до 7 двигателей насосов для обеспечения токовой защиты и защиты от перегрузки любого насоса, работающего в каждый конкретный момент времени;
  8. Диагностика неисправностей, позволяющая автоматически выявлять и исключать из алгоритма работы системы неисправные насосы.

Для получения технико-коммерческого предложения свяжитесь с нами одним из указанных вверху и внизу данной страницы способом.

КРАТКАЯ СПРАВКА: ПЛАВНЫЙ ПУСК НАСОСОВ

На практике пусковой ток электродвигателей насосов в 3-5 и более раз превосходит номинальный ток. Это в конечном счете приводит к увеличенному тепловому износу изоляции обмоток статора (из-за этого в значительной степени снижается долговечность работы и надежность электродвигателя насоса). Помимо этого, если мощность питающей сети недостаточна, возможно краткосрочное падение напряжения, а это уже может негативно влиять на работу другого электрооборудования, запитанного от той же сети.

Прямой пуск насоса вреден и для агрегата и для скважины в целом, так как сопровождается гидроударами, которые разрушают запорную арматуру, трубопровод и сам насос. При прямом запуске скважинного насоса может наблюдаться сильный приток воды из водного пласта и это приводит к разрушению фильтровальной зоны, а, следовательно, к попаданию песка в скважину.

Единственным эффективным решением данных проблем является реализация плавного пуска насоса , для чего разработан целый ряд технических средств, в том числе устройства плавного пуска и преобразователи частоты.

Задача устройств плавного пуска — обеспечить защиту насосных агрегатов от высокого пускового тока, механических перегрузок, гидроударов, т.е. обеспечить долговечность и надежную эксплуатацию оборудования. Наряду с решением задачи плавного пуска применение преобразователей частоты при работе насосов позволяет согласовать производительность насоса с расходом перекачиваемой жидкости в каждый момент времени, что позволяет значительно снизить энергопотребление системы.

Перейдите в разделы, приведенные ниже, выберите необходимое оборудование и положите его в корзину. – Преобразователи частоты
– Оборудование для плавного пуска

для преобразователей частоты серий ES022, ES024, ES025 и ES026

(с) 2002-2020 ООО “Эффективные Системы”
Контактная информация

Однофазное УПП TSG 2.2 230VAC для снижения пусковых токов при запуске двигателей, насосов, насосных станций.

Очень часто пользователи автономных генераторов электрической энергии сталкиваются с одной и той же проблемой, которую все описывают по-разному: «проседает» генератор, временно падает напряжение в сети, генератор глохнет во время пуска насосной станции и т.п. Если используемое оборудование исправно, то проблема, как правило, возникает при включении «мощных» механизмов, имеющих в своём составе асинхронный двигатель.

В бытовых насосных станциях чаще всего используются асинхронные двигатели. Соответственно в более производительные насосные станции устанавливаются более мощные электродвигатели.

Во избежание возникающих при пуске насосной станции процессов пагубных для механической и электрической части нужно использовать устройство плавного пуска (УПП), так называемый, софтстартер.

Чем более мощный электродвигатель приводит в действие насос, тем больший пусковой ток возникает при его запуске. Если поставить эксперимент и включать в сеть поочерёдно асинхронные двигатели и постоянно увеличивать их мощность, то можно заметить, что в момент пуска более мощных электродвигателей их влияние на параметры питающей сети растёт. Все более заметным становится падение напряжения в питающей сети, так лампы накаливания на мгновение светят менее ярко, чем обычно, лампы дневного света могут гаснуть и снова зажигаться, в чувствительной электронике может срабатывать защита от перепадов напряжения. Так на напряжение питающей сети оказывает действие пусковой ток асинхронного двигателя, который может превышать номинальный ток в 2-8 раз. Такие импульсные броски тока могут стать причиной выхода из строя другого оборудования, чувствительного к качеству питающего напряжения, и подключенного к той же фазе, что и двигатель.

В промышленности, где проблема пусковых токов стоит остро из-за использования мощных асинхронных двигателей давно используют различные методы, позволяющие уменьшить пусковые токи и нагрузку на всю энергосистему предприятия в целом. В бытовых условиях, обычно, доступно лишь однофазное напряжение, поэтому и асинхронные двигатели используются однофазные, их ещё называют конденсаторными.

Во избежание возникающих при пуске насосной станции процессов пагубных для механической и электрической части нужно использовать устройство плавного пуска (УПП), так называемый, софтстартер.

Устройства плавного пуска обеспечивают медленное увеличение напряжения, подаваемого на электродвигатель (насос) при его запуске, тем самым достигается плавный разгон электродвигателя и существенное снижение значений пускового тока и крутящего момента. На рисунке 1 представлены графики крутящего момента во времени, в зависимости от способа подключения асинхронного двигателя с короткозамкнутым ротором к сети питания (с использование УПП и без).

Рисунок 1 – графики изменения крутящего момента во времени, в зависимости от способа подключения асинхронного двигателя с короткозамкнутым ротором к сети питания.

Предлагаемые на рынке в огромном количестве устройства плавного пуска в большинстве своём рассчитаны на промышленность и, соответственно, на работу в трёхфазных сетях. Работать в однофазных сетях такие устройства не могут.

Но существует доступное решение – однофазное устройство плавного пуска TSG 2,2 230VAC, производимое австрийской фирмой TELE.

Устройство TSG 2,2 230VAC выполнено в промышленном компактном корпусе для монтажа на DIN-рейку, внешний вид устройства показан на рисунке 2:

Рисунок 2 – Внешний вид и габариты устройства плавного пуска TSG 2,2 230VAC
Техническая документация в формате pdf доступна по ссылке

Рисунок 3 – Схематичный вид лицевой панели устройства серии TSG

Устройство плавного пуска TSG активируется, когда переменное напряжение сети питания подаётся на выводы L1 и L3 (LED U ВКЛ). Напряжение на выходе Т1 увеличивается линейно в течение заданного времени до достижения максимального значения; на выходы T2 и T3 постоянно подаётся напряжение сети питания. Время, в течение которого происходит этот процесс можно плавно регулировать с помощью регулятора TON в диапазоне от 0 до 20 секунд. С увеличением напряжения увеличивается и момент вращения. Таким образом, происходит запуск двигателя с постоянным разгоном. По окончании цикла запуска, двигатель напрямую подключается к сети питания с помощью встроенного шунтирующего (байпас) контактора.

Принцип работы TSG 2,2 230VAC показан на рисунках 4 и 5.

Рисунок 4 – Работа TSG 2,2 230VAC при положении регулятора Mon = 0

Рисунок 5 – Работа TSG 2,2 230VAC при не нулевом положении регулятора Mon

Примечательно, что данное устройство плавного пуска (УПП) разработано специально для пуска однофазных асинхронных электродвигателей, широко распространенных в быту. Рассмотрим подключение устройства TSG 2,2 230VAC на примере насосной станции с автоматическим включением по сигналу с датчика давления. Подключение схематически показано на рисунке 6. При использовании TSG 2,2 230VAC нет необходимости использовать дополнительное оборудование в цепи питания двигателя, шунтирующий контактор входит в состав устройства и находится внутри корпуса.

Рисунок 6 – Подключение однофазного асинхронного двигателя к устройству плавного пуска TSG 2,2 230VAC

Выбирая устройство плавного пуска обязательно нужно учитывать следующие параметры:

  1. Параметры питающей сети (номинальное напряжение и количество фаз);
  2. Номинальный ток электродвигателя должен быть меньше или равен номинальному току УПП;
  3. Пусковой ток электродвигателя не должен превышать максимально допустимого для УПП значения;
  4. Максимальное количество циклов запуска электродвигателя в час не должно превышать значения, указанного в паспортных данных УПП.

Технические характеристики TSG 2,2 230VAC и TSG 2,2 400VAC представлены в таблице ниже:

УПП уменьшает механическую нагрузку на двигатель при его запуске и снижает пусковые токи

Зелёный LED ВКЛ: индикация напряжения питания

Жёлтый LED (100%) ВКЛ: выходное напряжение 100%, активизирован встроенный шунтирующий контактор (БАЙПАСС)

Самозатухающий пластиковый корпус, IP рейтинг IP40

Установка на DIN-рейку TS 35 в соответствии с EN 50022

Установочная позиция: любая

Ударопрочное подключение в соответствии с VBG 4 (требуется PZ1), IP рейтинг IP20

Момент затяжки: макс. 0.5Nm

Размеры контактов цепи управления:

  • 1 x 0.5 – 2.5мм2 многожильный кабель
  • 2 x 0.5 – 1.0мм2 многожильный кабель
Все технические характеристики устройства в pdf
Устройства плавного пуска для 1- и 3-фазных сетей TELE на нашем сайте.
1.Функции
2. Регулируемые параметры
Диапазон настройки
Время запускаT0N 0с – 20с
Начальный пусковой момент M0N0 – 100%
3. Индикаторы
4. Исполнение
5. Цепь управления
Источник питания:внутренний
Точность:
Рабочая частота:
Продолжительность работы:100%
6. Силовая цепь
Напряжение питания:
Вводы L1- L2 – L3:
TSG 2.2-230VAC1

230В

TSG 2.2-400VAC3

400В

Точность:±20%
Рабочая частота:50 – 60Гц
Пусковой момент MON0..100%
Кол-во циклов запуска:30/час (при средней загрузке)
Шунтирующий контактор:встроенный (БАЙПАС)
Пусковой ток:16A (макс.5с)
Макс. мощность двигателя:
TSG 2.2-230VAC1.3кВт
TSG 2.2-400VAC2.2кВт
Импульсное напряжение:2.5кВ
Номинальное напряжение:345/600В
7. Условия эксплуатации
Рабочая температура:от -20 до +45°C
Температура хранения:от -10 до +70°C
Температура транспортировки:от -10 до +70°C
Относительная влажность:5% – 95%
Конденсация недопустима.

Часто задаваемые вопросы:

В: Чем отличаются устройства плавного пуска TSG 2,2 230VAC и TSG 2,2 400VAC?

О: Это два разных устройства, TSG 2,2 230VAC предназначено для запуска 1-фазных электродвигателей 220-230VAC мощностью до 1,3кВт, TSG 2,2 400VAC предназначено для пуска 3-фазных электродвигателей 380-400VAC (либо 2-фазных электродвигателей 380-400VAC) мощностью до 2,2кВт. Причём оба эти устройства осуществляют плавный пуск только по одной фазе, поэтому для 3-фазных электродвигателей мы рекомендуем использовать устройства плавного пуска серии MSG.

В: Какова схема включения УПП TSG 2,2 230VAC для однофазного двигателя

О: Устройства плавного пуска включается непосредственно в цепь питания электродвигателя. Сигнал управления, который ранее использовался для управления контактором, напрямую соединявшим цепь питания двигателя с сетью питания, теперь должен управлять активизацией УПП. Схема подключения приведена на рис. 6 и в инструкции на устройство.

В: Насколько часто можно производить запуск двигателя с УПП?

О: Стандартная величина циклов запуска для УПП серии TSG и MSG – 30 циклов в час (при средней нагрузке). Во время запуска происходит выделение тепла, поэтому требуется время на охлаждение устройства.

В: Для чего нужен регулятор Mon?

О: Регулятор Mon позволяет определить начальный момент вращения (начальное напряжение), с которого будет начат цикл плавного пуска, если Mon установлен в 0, то при осуществлении цикла запуска двигатель некоторое время будет оставаться неподвижным, опытным путём можно подобрать такое значение Mon, при котором двигатель сразу же будет начинать вращение и постепенно достигнет рабочего режима. Важно: увеличение начального пускового момента Mon увеличивает пусковой ток!

В: Для чего нужен регулятор Ton?

О: Регулятор Ton используется для задания времени, в течение которого будет производиться плавный пуск двигателя от Mon до 100% момента вращения (напряжения), по его окончании будет активизирован шунтирующий контактор. Важно: уменьшение времени запуска Ton увеличивает пусковой ток!

В: Что такое шунтирующий контактор?

О: Шунтирующий контактор (байпас-контактор) замыкает цепь питания электродвигателя напрямую от сети питания, в обход устройства плавного пуска, сразу после того, как цикл плавного запуска электродвигателя завершён. Устройства плавного пуска серии TSG и MSG имеют шунтирующий контактор в своём составе, таким образом, его не требуется приобретать дополнительно.

В: Можно ли запитать с выходов УПП другие бытовые приборы, кроме двигателя.

О: Устройство плавного пуска предназначено для плавного запуска электродвигателя, подключение других потребителей может привести к выходу из строя как потребителей, так и самого устройства.

В: Какие дополнительные аксессуары понадобятся для работы УПП серий TSG и MSG?

О: Дополнительные аксессуары для работы устройств плавного пуска данных серий не требуются.

Где купить?

Перейти к изделию в интернет-магазине: TSG 2,2 230VAC (490251)

Плавный пуск насоса скважины

Есть множество причин для включения бытовых насосов через устройство плавного пуска.

Обычно погружной или поверхностный насос подключают через электромеханическое или электронное реле, блок автоматики или магнитный пускатель. Во всех перечисленных случаях сетевое напряжение подаётся на насос путем замыкания контактов, то есть через прямое подключение. Это означает, что на обмотки статора электродвигателя мы подаём полное сетевое напряжение, а ротор в это время ещё не вращается. Это приводит к появлению мгновенного мощного вращательного момента на роторе электродвигателя насоса.

Такая схема подключения характеризуется следующими явлениями при запуске насоса:

Скачки тока через статор (соответственно, и через подводящие провода), так как ротор короткозамкнутый.
В упрощённом понимании мы имеем короткое замыкание на вторичной обмотке трансформатора. По нашему опыту, в зависимости от насоса, производителя и нагрузки на валу, импульсный пусковой ток может превышать рабочий ток от 4 до 8, а на отдельных экземплярах и до 12 раз.

Резкое появление вращающего момента на валу.
Это оказывает негативное воздействие на пусковую и рабочую обмотки статора, подшипники, керамические и резиновые уплотнители, существенно увеличивая их износ и уменьшая ресурс службы.

Появление резкого вращающего момента на валу приводит к резкому повороту корпуса скважинного насоса относительно трубопроводной системы.
Мы неоднократно бывали свидетелями того, как из-за этого скважинный насос отсоединялся от трубопроводов и падал в скважину. В случае насосной станции на базе поверхностного насоса, установленного на платформу гидроаккумулятора, это приводит к разбалтыванию крепёжных гаек и разрушению сварных точек и швов гидроаккумулятора. Также при прямом включении насоса сокращается срок службы водопроводной и запорной арматуры, особенно в местах их соединения.

Принято считать, что гидроаккумулятор убирает гидроудары в системе водоснабжения.
Это действительно так, но гидроудары исчезают в трубопроводах только начиная от места подключения гидроаккумулятора. В промежутке между насосом и гидроаккумулятором при прямом подключении насоса гидроудар остаётся. В итоге на промежутке от насоса до гидроаккумулятора мы имеем все последствия гидроудара на все части насоса и на трубопроводную систему.

В системах фильтрации воды гидроудары, возникающие при прямом подключении насоса, значительно сокращают срок службы фильтрующих элементов.

Если локальная электросеть слабая, то о запуске насоса мощностью более 1кВт при прямом подключении узнают и Ваши соседи по резкому спаду напряжения в сети в момент включения насоса.
Если локальная сеть КРАЙНЕ СЛАБА, и Ваш сосед тоже получает удовольствие от жизни, подключив к сети все доступные электрические приборы, то скважинный насос, погружённый на большую глубину, может и не запуститься. Такой скачок напряжения может вывести из строя электронные приборы, подключённые в сеть. Известны случаи, когда при запуске насоса выходил из строя напичканный электроникой дорогостоящий холодильник.

Чем чаще включается насос, тем меньше его ресурс службы.
Частые запуски через прямое подключение приводят к выходу из строя пластмассовых муфт скважинных насосов, соединяющих электродвигатель с насосной частью.

Мы с Вами прошлись по проблемам, которые возникают при запуске насоса без устройства плавного пуска (УПП).

Необходимо отметить, что и при выключении насоса без УПП с прямой схемой подключенияесть негативные моменты:

При выключении насоса также происходит гидроудар в системе, но теперь уже по причине резкого снижения вращающего момента на валу насоса, что равносильно созданию мгновенного разряжения.

Резкое снижение вращающего момента на валу насоса также приводит к повороту корпуса насоса, но в противоположную сторону.
Вспомним о трубопроводах и резьбовых соединениях насоса.

В обычных бытовых насосах электродвигатели являются асинхронными и имеют явно выраженный индуктивный характер.
Если мы резко прерываем подачу тока через индуктивную нагрузку, то происходит резкий скачок напряжения на этой нагрузке по причине непрерывности тока. Да, мы размыкаем контакт, и всё высокое напряжение должно остаться на стороне насоса. Но при любом механическом размыкании контакта присутствует так называемый «дребезг контактов», и импульсы высокого напряжения попадают в сеть, а значит попадают и в приборы, подключенные в это время к сети.

Таким образом, при прямом подключении насоса происходит повышенный износ механических и электрических частей насоса (как при запуске, так и при отключении). Также страдают приборы, включенную в эту же сеть, и уменьшается ресурс работы систем фильтрации и водопроводной арматуры.

  • PDF. Инструкция на устройство плавного пуска насоса «EXTRA Акваконтроль УПП-2,2С»
  • JPG. Схема подключения УПП-2,2С после механического реле типа РДМ
  • JPG. Схема управления УПП-2,2С с помощью сигнального кабеля
  • Использование устройства плавного пуска («Акваконтроль УПП-2,2С») позволяет сгладить большинство описанных выше недостатков. В устройстве УПП-2,2С реализована специально рассчитанная кривая нарастания напряжения на насосе, позволяющая с одной стороны гарантированно запустить насос в самых неблагоприятных условиях эксплуатации, а с другой стороны плавно увеличить частоту вращения вала. Также в этот прибор встроена защита от низкого и высокого напряжения сети, чтобы оградить насос от экстремальных режимов работы и включения.

В УПП-2,2С используется фазное симисторное управление. В момент пуска на насос подается часть сетевого напряжения, которое создает вращающий момент, достаточный для гарантированного запуска насоса. По мере раскрутки ротора плавно увеличивается напряжение на насосе до момента полной подачи напряжения. После этого включается реле и отключается симистор. В итоге, при использовании УПП-2,2С насос подключён к сети через контакты реле, то есть так же, как и при прямом подключении. Но в течение 3,2 секунд (это время плавного пуска) напряжение на насос подаётся через симистор, что обеспечивает «мягкий пуск», без искр на контактах реле.

При таком запуске максимальный пусковой ток превышает рабочий не более чем в 2,0-2,5 раза вместо 5-8 раз. Используя УПП-2,2С, мы в 2,5-3 раза уменьшаем пусковые нагрузки на насос и во столько же раз продлеваем жизнь насосу, обеспечиваем более комфортную работу приборов, подключённых к электрической сети. УПП-2,2С можно назвать устройством с ресурсосберегающей технологией.

Если взглянуть на погружной насос для скважины с технической точки зрения, придется согласиться с тем, что это очень высокотехнологичный агрегат:

  • при незначительных габаритных размерах обеспечивает высокую производительность;
  • способен работать длительное время в относительно сложных условиях.

Стоимость скважинного насоса сравнительно высока, монтаж в обсадной колонне – сложен. Отсюда следует вывод: скважинный насос – это оборудование, которое нужно постараться как можно реже ремонтировать и менять. А для этого необходимо создать для него оптимальные условия эксплуатации, тогда оборудование прослужит максимально долго без поломок и сбоев.

Факторы, влияющие на срок эксплуатации насоса для скважины

Любой электрический двигатель (а насос – это, по сути, электродвигатель) в момент запуска испытывает максимальные нагрузки. Чем реже включается двигатель, тем дольше он прослужит. Именно поэтому в схеме водоснабжения загородного дома предусмотрен накопительный бак – простой или гидроаккумуляторный, – чтобы насос за один цикл работы успел накачать как можно больше воды.

В этом случае в работе водопровода скважинный насос будет задействован только при понижении уровня воды в накопительном баке. При отсутствии емкости с запасом воды, двигатель насоса будет запускаться каждый раз при активации хотя бы одной точки водоразбора.

Второй негативный фактор – пусковые токи, превышающие номинальные в разы. Это связано с инертностью механической части электродвигателя, когда вращение компонентов начинается чуть позднее, чем подача питания. При частых пусках насосного оборудования и постоянном возникновении высоких пусковых токов постепенно из-за высоких тепловых нагрузок снижается защитная функция изоляции обмоток двигателя. А это уже чревато коротким замыканием и, как следствие, поломкой насоса.

Способы компенсации высокого пускового тока

Чтобы снизить величину пускового тока, необходимо предусмотреть установку системы плавного пуска. Предлагаем вашему вниманию два типа систем плавного пуска скважинного насоса:

  • Плавный SS-пуск при помощи специального пульта управления скважинными насосами, выпускаемыми отечественными производителями (автоматические станции управления и защиты САУ «Каскад» и «Высота») и зарубежными (Pedrollo, Grundfos и некоторые другие).
  • Запуск двигателя скважинного насоса при помощи преобразователя частоты.

Принцип подачи электропитания на насос при помощи электронных станций САУ заключается в автоматическом плавном увеличении напряжения, регулируемым путем фазового управления. При помощи преобразования частоты пусковой ток удерживается на уровне номинального.

Основные функции САУ:

  • автоматический (с возможностью переключения на ручной режим) пуск и остановка насоса по команде реле, определяющего уровень воды в накопительном баке;
  • дистанционное управление насосом;
  • защита насоса и отключение питание при возникновении короткого замыкания, перекосе фаз и перегрузках;
  • защита от «сухого хода».

К недостаткам САУ можно отнести высокую стоимость оборудования.

А знаете ли вы?

Некоторые производители скважинных насосов предлагают модели со встроенной системой плавного пуска. Например, Grundfos серий SQ и SQE.

Высокий пусковой ток – проблема для систем с ограничением по максимальной мощности. Автомат может выбивать, система бесперебойного питания уйти в режим перегрузки. Как быть?

Удачным решением станет использование устройства плавного пуска (УПП). Например, мы имеем однофазный погружной насос мощностью 1кВт, расположенный в скважине на глубине 50 метров. Для старта его двигателя потребуется 4-6-ти кратный пусковой ток, т.е. система должна выдержать кратковременную мощность около 5кВт. Скажем, инвертор, расчитанный на 3кВт просто не сможет осуществить запуск. Момент старта также будет сопровождаться резким повышением давления, который фактически означает гидроудар по системе водопровода.

В линию, питающую насос вставим УПП. Устройство в течение заданного времени (обычно до 20сек.) плавно поднимет напряжение, что позволит насосу с ускорением раскрутить крыльчатку, без рывка. В итоге мы приравняли пусковой ток к номиналу,т.е. он составил величину 1кВт и существенно продлили жизнь погружному насосу (срок службы увеличивается где-то в 2 раза, учитывая стоимость насоса, решение о применении УПП, даже в отсутствии системы резервирования энергии становится очевидным):

Представим схему подключения устройства плавного пуска TELE TSC 2.2, которое может использоваться как с однофазным, так и с трехфазным оборудованием:


Существую ли ограничения для использования устройства плавного пуска? Да, таковые есть и о них следует знать:
1) УПП нельзя использовать с холодильниками. Высокий пусковой ток необходим для срыва в движение клапанов компрессора
2) Аналогично для кондиционеров и прочего оборудования

Если у вас остались вопросы – рад буду ответить в комментариях!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: