Резонансный генератор тесла

Электрогенератор Николы Тесла

Изобретения знаменитого сербского учёного Николы Тесла намного опередили развитие науки в области альтернативных источников энергии. Его считают человеком, подарившим электричество людям. Созданные им устройства, в том числе электродвигатель, безтопливный генератор, резонасный трансформатор и другие открытия создали стартовую площадку для перехода на новый этап промышленного развития. Настоящей мечтой гения стала идея подарить людям бесплатное электричество. Генератор Тесла, по замыслу изобретателя, мог передавать энергию электрического тока беспроводным способом на большие расстояния.

Что это такое

Фактически, безтопливный электрический генератор — это вечный двигатель, для работы которого не нужны дополнительные ресурсы. Получение свободной энергии — мечта человечества, которая станет толчком для переустройства общественных отношений общества, приведёт к эволюционному скачку развития.

Реализовать идею получения альтернативной энергии мог бы стать генератор Тесла, который черпает энергию из эфира.

Важно. Много ходят споров, существует ли эфир. По мнению Н. Тесла — это легчайший газ, из почти неуловимо малых частиц. Они движутся с невообразимой скоростью. Н. Тесла считал, что каждый вид волны работает на своей частоте и в определённой среде. Эфир — среда для почти мгновенной передачи электромагнитных волн. Его поле способно переносить на громадные расстояния электромагнитные, гравитационные волны.

Принцип действия безтопливного генератора

Эфир — источник неограниченной энергии. Электромагнитные волны пронизывает окружающую нас атмосферу. У земли низкий энергетический потенциал, у света, солнечных лучей — высокий. Если установить улавливатель между положительно заряженными частицами света и отрицательно заряженным потенциалом земли, то можно получать электрический ток. В эту цепочку нужно вставить накопитель конденсатор, к примеру, литиевую батарейку. Она будет улавливать и накапливать энергию. В момент подключения к конденсатору источника питания, произойдёт разрядка накопителя.

Основные звенья безтопливного генератора Н. Тесла состоят:

  1. Расположенного над землёй приёмника.
  2. Накопителя-конденсатора.
  3. Заземление.

Обратите внимание! Безтопливный электрогенератор базируется на получении электрического тока из эфира. Используют два разно заряженных потенциала. Земля — ресурс отрицательных электронов, световая волна, в том числе от солнца — положительных. Один из электродов заземляется, другой — выводится на экранированный экран. В качестве накопителя в цепи устанавливают конденсатор, который аккумулирует энергию.

Генератор тесла своими руками на 220 вольт

  • диэлектрическая основа для экрана (плотный картон, пластиковая панель, фанера);
  • фольгированный материал;
  • провод;
  • электролитический конденсатор (напряжение от180 до400 В);
  • для регуляции напряжения возможна установка резистора (сопротивления).

Подобный набор материалов почти всегда есть в доме.

Заземление

Достаточно соединить провод с металлическим стержнем, заглубить его в землю. На даче можно бросить провод на любую металлическую трубу в земле. В квартире подсоединяют провод к водопроводным, газовым металлическим трубам, фазе заземления в розетке.

Экран генератора Тесла

Принимает от источников световое излучение с положительно заряженными частицами (от источника света, солнца).

Сделать его несложно, достаточно обтянуть диэлектрическую панель фольгой. Слои накладывают внахлёст. Чем больше экран для улавливания положительно заряженных частиц, тем выше напряжение в цепи. Соединяют между собой и несколько экранированных поверхностей. Они образуют цепь экранов безтопливного генератора Тесла. Соответственно расширению площади улавливающих панелей, нужно увеличивать ёмкость конденсатора, мощность рассеивания резистора.

Нужно соединить и подключить элементы схемы безтопливного генератора Тесла. Один провод (контакт) соединяют с фольгированным экраном, второй ведут от заземления. Контакты замыкают на полюсах конденсатора. В момент замыкания цепи, начинается зарядка батареи.

Безтопливный генератор Тесла готов. Проверить его можно, если контакты лампочки подсоединить к батарейке, она загорится.

Устройство и принцип действия

Еще одним изобретением Н. Тесла стал «резонаторный трансформатор Тесла». Он предназначен для преобразования первоначального электрического импульса в высокочастотный ток. В результате на входе трансформатора величина составляет 24 Вольта, а на выходе получают 220 Вольт. Результат фиксируется осциллографом. Показатели могут отличаться, в зависимости от конструкции, мощности трансформатора.

Резонаторный трансформатор Тесла

Резонансный трансформатор Тесла — отсциллятор (колебательная система), в которой трансформирует, изменяет напряжение переменного электрического тока в высокочастотный.

Основу трансформатора Тесла составляют два контура, из первичной и вторичной катушки. Именно в этой колебательной системе происходит трансформация первоначального импульса электротока.

Составляющие элементы катушки Тесла:

  • катушки (первичная, вторичная);
  • накопитель-конденсатор;
  • разрядник-вентилятор (предохраняет от перенапряжения);
  • защитный контур или кольцо с заземлением;
  • тороид.

Сборка всех этих элементов в единое устройство позволит низкочастотный импульс электрического тока преобразовать в высокочастотное напряжение.

Назначение элементов высокочастотного трансформатора Тесла

Тороид. Вращающийся по прямой линии круг образует форму тора. Это геометрическая форма тороида. Для трансформатора Тесла используют гофрированную металлической трубу.

  • снижает частоту колебаний второго контура;
  • увеличивает выходное напряжение;
  • создаёт электростатическое поле вторичной обмотки;
  • защищает от пробоя вторичную обмотку.

Первичная обмотка или резонансный контур

Проводник с небольшим сопротивлением. Для его изготовления используют медную трубку с диаметром 6 мм. С помощью дополнительных устройств меняют частоту резонанса контура.

Вторичная катушка

Основной элемент резонансного трансформатора — вторичная катушка с обмоткой. Длина обмотки в экспериментальных установках к диаметру составляет 5/1. Оптимальное количество витков медной обмотки 1000 — 1200 оборотов. Наматывают их на диэлектрические ПВХ трубы.

Материалы для изготовления высокочастотного трансформатора Тесла:

  • в качестве источника питания используют трансформатор для неоновой подсветки (до 35 мА/напряжения на выходе меньше 4 кВ);
  • конденсатор;
  • провод из меди толщиной (от 0,3 до 0,6 мм) ;
  • пластиковая труба (75 мм);
  • заземление (металлический прут);
  • металлическая вентиляционная труба:
  • шар из металла, полый внутри (тороид);
  • медная трубка для кондиционера (6 мм).
  • шарик из металла, крепёж.

Монтаж системы генератора по схеме.

Система состоит из следующих блоков:

  1. Разрядник. 2 металлических болта, прикручивают к основе из пластика, между ними фиксируют металлический шарик. В момент подключения к трансформатору в разряднике возникает искра.
  2. Конденсатор. Состоит из 1 блока или составных элементов. Конденсатор накапливает заряд, чтобы пробить разрядник.
  3. Резонансный трансформатор, подает первичный электрический импульс.
  4. Вторичная катушка индуктивного контура. Медный провод наматывают на пластиковую трубу, витки должны плотно прилегать друг к другу (количество витков от 900 до 1200). Обмотку, если это не эмалированный медный провод, покрывают несколькими слоями лака, эпоксидной смолы. К вторичной катушке подсоединяют провод и выводят заземление.
  5. Первичный контур. Изготавливают из медной трубы, которую сгибают в несколько витков. Чтобы она не треснула, в момент изгибания, внутрь предварительно нужно насыпать песок. Между витками оставляют расстояния до 5 мм. Соединяют все элементы по схеме.

Обратите внимание! Тороид необходим, чтобы предотвратить попадание стимера на первичную обмотку. Искра выводит электронику из строя. Тороид заземляют путём соединения с основным проводом.

Принцип действия трансформатора Тесла

От трансформатора подаётся импульс, который заряжает конденсаторы. При достижении нужного напряжения, происходит пробой газа на разряднике, искра. Первичный контур в момент замыкания генерирует высокочастотное колебание. Электромагнитные волны переходят на вторичную катушку. Возникает резонансное колебание, которое продуцирует токи высокой частоты и напряжения.

Газовые разряды

Работа высокочастотного трансформатора Теслы сопровождается интересными эффектами. Образуются различные газовые разряды и свечения:

  • Стимеры. Ионизированное свечение газов в воздухе.
  • Спарки. Вспыхивающие и гаснущие искровые каналы.
  • Коронное свечение. Возникает вокруг искривленных частей трансформатора (голубого цвета).
  • Дуга. Появляется, если в высоковольтное поле ввести заземлённый предмет, возникает светящаяся дуга.

Подобные эффекты широко используют для создания различных эстрадных, цирковых шоу.

Воздействие на человека

В отличие от низкочастотного тока, высоко частотный не проникает вглубь тканей человека, стекая по поверхности тела. ВЧ ток исключает электротравму.

Используется в медицине для лечения:

  • ультра частотная терапия, аппараты УВЧ;
  • диатермия, прогревание ВЧ токами;
  • индуктотермия, лечение высокочастотным магнитным полем;
  • оздоровление органов с помощью микроволнового аппарата;
  • дарсонваль, воздействие на части тела высоковольтными разрядами.

В повседневной жизни пользуются микроволновой печью с СВЧ излучением.

Н. Теслу по праву считают гением своего времени. Существуют мнение, что его теория эфира, гениальные разработки блокировались. Тесла мечтал обеспечить человечество бесплатной энергией, создать антигравитационный двигатель, путём преобразования энергии эфира. Бестопливный генератор, резонансный трансформатор Н. Тесла собирают своими руками даже школьники. А это значит, что кто-то продолжит его дело.


Как сделать генератор Тесла своими руками в домашних условиях

Дата публикации: 18 ноября 2019

Проводя свои многочисленные опыты, Никола Тесла мечтал создать способ подачи энергии в мир, не протягивая провода по всему земному шару. Изобретатель уже был близок к воплощению своей мечты, когда эксперименты с электричеством привели его к созданию генератора свободной энергии Тесла.

Основные элементы

Эта первая система, способная передавать электричество по беспроводной связи, была поистине гениальным изобретением. Концепция элементарна, используется электромагнитная сила и резонанс. Устройство состоит из двух частей: первичной и вторичной, каждая со своим конденсатором.

Две катушки и конденсаторы соединены разрядником, а внешний источник, подключенный к трансформатору, питает всю систему. По сути, униполярный генератор Тесла представляет собой две открытые электрические цепи, нуждающиеся в источнике высокого напряжения.

Как это устроено

Источник питания подключен к первичной катушке. Её конденсатор действует как губка, поглощая заряд. Сама она должна выдерживать большие скачки тока, поэтому катушка зачастую изготавливается из меди — отличного проводника электричества. Конденсатор накапливает так много заряда, что разрушает сопротивление воздуха в искровом промежутке. Затем ток течет из накопителя вниз по первичной катушке и создает магнитное поле, которое быстро разрушается под действием большого количества энергии, генерируя электрический ток во вторичной катушке.

Напряжение, проникающее через воздух между двумя катушками, создает искры. Энергия колеблется, накапливаясь во вторичной катушке и конденсаторе. Заряд становится настолько высоким, что высвобождается электрическим током.

В правильно спроектированном бестопливном генераторе Тесла, когда вторичная катушка достигает своего зарядного максимума, весь процесс должен начаться заново, устройство должно стать самоподдерживающимся. Но на практике этого не происходит. Нагретый воздух отводит часть электричества, вот почему катушка должна быть подключена к внешнему источнику питания.

Принцип, лежащий в основе работы генератора Тесла, заключается в достижении явления, называемого резонансом. Это происходит, когда первичная катушка «стреляет» током во вторичную в нужное время, чтобы максимизировать передаваемую энергию.

Установка катушки Тесла с регулируемым поворотным искровым разрядником дает больший контроль над напряжением тока, который производится. Так можно создавать молнии.

Хотя изобретение учёного больше не имеет практического применения, оно полностью изменило способ понимания и использования электричества. Радио и телевидение до сих пор используют вариации генератора Тесла.

Как собрать генератор Тесла своими руками

Используя медную проволоку и стеклянные бутылки, даже электрик-любитель в силах построить катушку Тесла, которая теоретически может производить четверть миллиона вольт. Для работы понадобится:

  1. Катушки. Для первичной нужно около 3 метров тонкой медной трубки, на вторичную нужно приготовить: отрезок ПВХ трубы длиной 25 см (чем длиннее, тем лучше), примерно 10 м проволоки из меди в изоляции, пластиковый винт, металлический фланец с резьбой, любой круглый, гладкий предмет из металла для разгрузочного терминала.
  2. Для базы: 2-3 небольших куска деревянной доски, длинные болты, гайки, шайбы.
  3. Конденсаторы: 6 стеклянных бутылок, столовая соль, растительное масло, много алюминиевой фольги.
  4. Трансформатор или любой другой источник питания, выдающий не менее 9 кВ при напряжении около 30 мА.

Первым делом в верхней части трубы нужно сделать паз, чтобы обернуть один конец провода вокруг. Медленно и осторожно обмотайте катушку, следя за тем, чтобы провода не перекрывались, но без пробелов. Этот шаг самый сложный, но если потратить много времени, то получится рабочая катушка.

Читайте также:  Как проверить таблетку на генераторе тестером

Затем выровняйте металлическую стойку (центр нижней доски), просверлите отверстия для болтов, закрепите. Привинтите основание первичной обмотки. Установите конструкцию на базу.

Один из способов изготовления конденсатора — использовать соленую воду, масло и алюминиевую фольгу. Заверните бутылку в фольгу и наполните её водой. Уровень жидкости должен быть одинаковым во всех ёмкостях, поскольку это помогает поддерживать постоянную выходную мощность. Добавьте в воду 5 г (1/4 чайной ложки) соли и несколько миллилитров масла. Пробейте отверстие в верхней части колпачка и вставьте в него кусок проволоки — один работающий конденсатор готов, сделайте ещё 5.

Увлекательный, но опасный этап — подключение. Соблюдайте меры безопасности. Для проведения опыта лучше выйти на улицу, так как запуск такого потенциально мощного прибора в помещении может стать причиной пожара. Нажмите на переключатель и наслаждайтесь световым шоу.

Вам нужно войти, чтобы оставить комментарий.

Генератор Тесла

В условиях постоянного роста потребляемой энергии широкий интерес вызывает возможность добычи электричества нетрадиционными способами. Среди них с давних пор известен генератор Тесла, способный вырабатывать энергию без использования какого-либо топлива. Данный метод теоретически открывает возможности для полной независимости от энергоснабжения, однако, как показывает практика, до этого еще очень далеко.

Альтернативный источник электроэнергии

Данное изобретение можно смело отнести к альтернативным источникам электроэнергии. Благодаря своим возможностям, генератор Тесла является возможной заменой солнечным батареям. Он отличается простой конструкцией, которая легко собирается и минимальным количеством используемых материалов. Соответственно, и финансовые затраты тоже незначительные. Отдельно взятое устройство конечно не сравнится с аналогичной солнечной панелью, но если соединить в одно целое сразу несколько единиц, то может вполне получиться приемлемый результат.

Многие ученые до сих пор ведут споры об использовании действия свободной энергии при создании такого устройства. Однако, большинство современных технических достижений в самом начале их открытия, тоже считались недосягаемыми для практической реализации. До настоящего времени остались неисследованными многие сферы, связанные с энергией и физическими полями. Хорошо изучены лишь те виды, которые поддаются исследованиям, измерениям и прочим ощущениям. Тем не менее, существуют явления, не поддающиеся каким-либо замерам, поскольку отсутствуют даже приборы для этих целей.

В категорию неисследованного попал и трансформатор Тесла, поскольку принципы его работы расходятся с общепринятыми теориями, связанными с производством электроэнергии. Многим ученым он кажется своеобразным вечным двигателем, не требующим энергии для своей работы, да еще и способным производить другие виды энергии – электрическую или тепловую. Эти утверждения связаны с использованием генератором свободной энергии, происхождение которой до сих пор никак теоретически не обосновано. То есть, на основе известных законов, понятий и определений делается вывод, что такая конструкция на практике не будет работать, поскольку она идет вразрез с законом сохранения энергии и не соблюдает его принцип.

Пока ученые спорят, некоторые домашние умельцы создают вполне работоспособные модели, подтверждающие на практике теоретические предположения. Для более глубокого понимания процессов, следует внимательно изучить конструкцию и принцип действия этих устройств.

Технические возможности генератора

Способы получения электричества, предложенные изобретателем Николой Тесла, значительно обогнали свое время. Даже сейчас эта тема широко не обсуждается, а если и рассматривается, то лишь в теоретической плоскости, без возможности практического использования.

Среди них особое место занимает бестопливный генератор Тесла, получивший в названии имя самого изобретателя, оформившего патент на устройство. Изначально существовало несколько вариантов его использования, но затем его основной функцией стало получение электрической энергии высокого напряжения и высокой частоты. Следует отметить, что в ходе экспериментов выходное напряжение нередко доходило до нескольких миллионов вольт. В результате, в воздушном пространстве возникали электрические разряды большой мощности, длина которых могла доходить до нескольких десятков метров.

С помощью этого устройства стало возможно создавать и распространять электрические колебания, управлять аппаратурой без проводов, путем телеуправления. Прибор использовался и при создании беспроводной радиосвязи, а также для передачи энергии на расстояние.

Практическое применение в начале прошлого века генератор получил в области медицины. Больные подвергались обработке потоками высокочастотной энергии, обладающими тонизирующим и лечебным действием. Проводились и эксперименты по переработке отходов мусорных свалок в электричество, создавая принцип работы устройства. Газ, выделяемый при сжигании мусора, служит универсальным источником тока для генератора, обладающего высоким КПД. Для того чтобы понять, как такое возможно, нужно знать устройство и принцип действия прибора.

Принцип работы генератора Тесла

Представленное генераторное устройство работает под влиянием внешних процессов или окружающей среды. Источниками энергии становятся вода, ветер, различные вибрации, создающие колебания и другие факторы. В этом состоит его главный принцип работы.

Простейший магнитный генератор состоит из катушки с двумя обмотками. Работа вторичного элемента осуществляется под действием вибрации, в результате, так называемые эфирные вихри взаимодействуют с его поперечным сечением. Это приводит к образованию напряжения во всей системе и к дальнейшей ионизации воздуха. Данные процессы возникают на самом конце обмотки, образуя электрические разряды.

В конструкции прибора используется трансформаторный металл, усиливающий индуктивные связи. Между элементами обмотки возникают колебания, а разряды образуются в виде плотных сплетений.

Другая схема генератора использует мощность, вырабатываемую самим оборудованием. Для того чтобы запустить генератор необходим внешний толчок в виде импульса, создаваемого аккумулятором. Прибор состоит из двух металлических пластин, одна из которых монтируется наверху, а другая устанавливается в землю. Между ними в цепь включается конденсатор.

Подача постоянного разряда производится к металлической пластине, после чего начинают выделяться определенные частицы с положительным потенциалом. На поверхности Земли образуются отрицательные частицы. В результате образуется разность потенциалов и ток начинает поступать в конденсатор.

Следует учитывать специфику подключения, которой отличается генератор свободной энергии Тесла. Для работы первичной катушки требуется высоковольтное напряжение высокой частоты. Данный ток обеспечивает неоднократная искровая разрядка конденсаторного элемента. Каждая искра образуется в таком промежутке, когда напряжение достигает определенного уровня между терминалами конденсаторов.

Для того чтобы искровой промежуток располагался в проводящем положении, требуется последовательная связь конденсатора и первичной катушки. Это приводит к созданию цепи RLC, которая, в свою очередь, приводит к электрическим колебаниям с определенной частотой. Одновременно на вторичной катушке образуется собственная цепь RLC. В этом месте электрические колебания возбуждаются под влиянием индукции напряжения. В каждой цепи колебания происходят с индивидуальной частотой, в зависимости от конкретных параметров конструкции.

Для обеспечения нормальной работы генератора, обе цепи должны войти в резонанс между собой, то есть их частоты колебаний совпадают. После этого во вторичной катушке происходит многократное увеличение амплитуды, что приводит к созданию высокого выходного напряжения.

Параметры и характеристики

В работе электрогенератора Тесла используется принцип трансформатора с отсутствующим сердечником. Конструкция состоит из первичной катушки с витками проводов большого диаметра, и вторичной катушки с витками из более тонких проводов. В приборе без магнита отсутствует традиционный ферромагнитный сердечник, что и отличает его от обычного трансформатора. Благодаря такой конструкции, уровень взаимной индуктивности катушек значительно снижается. Большое количество витков на вторичной катушке, способствует образованию высокого напряжения при минимуме энергетических затрат.

Данная теория нашла наглядное практическое подтверждение. Домашние умельцы, используя генератор свободной энергии мощностью 40 Вт, получают напряжение до 500 киловольт. Это приводит к образованию длинных красивых разрядов, достигающих двух или трехметровой величины. Попадая в атмосферу, высоковольтный разряд становится похож на своеобразную корону. С обычным трансформатором невозможно достичь такой продуктивной работы и наглядных результатов.

Помимо воздушных эффектов, происходит образование длинных мобильных зарядов при контакте с заземленными предметами. Следует отметить, что все разряды обладают определенными частотами, а другие частоты кратны первоначальному значению.

Каждый такой высоковольтный заряд состоит из определенного набора частот, способных разбивать молекулы газов, независимо от устойчивости любой из них. Процесс расщепления сопровождается появлением темно-синего цвета зеленоватого оттенка.

Таким образом, если на электрическую корону подать струю газа, то под влиянием резонансных сил произойдет распад молекул на отдельные атомы. Внешние электроны атомных частиц сосредоточатся на вторичной обмотке и перейдут в корону в виде ионов. На игольчатых выходах вторичной обмотки образуется очень высокое напряжение. В этом же месте устанавливается диодный выпрямитель, с положительным потенциалом, направленным в сторону острия. За счет этого возможно получить максимальный положительный результат, поскольку действие переменной токовой полуволны позволяет разбивать молекулы с одной и той же частотой.

Под действием постоянной токовой составляющей атомы без электронов будут разгоняться в направлении от иглы. В результате, в пространство выходят положительные атомы водорода, которые и образуют светящуюся корону.

Как сделать генератор Тесла своими руками: порядок действий

Первым этапом при изготовление генератора, будет устройство заземления. Если устройство будет использоваться на даче или в загородном доме, можно ограничиться единственным металлическим штырем, забитым глубоко в землю. Разрешается использовать готовые металлические конструкции, расположенные в земле. При использовании генератора в квартире, заземлением становятся DUG трубы или розетки с подключенным заземляющим контактом.

На втором этапе нужно создать элемент для приема свободных положительно заряженных частиц, вырабатываемых солнцем или любыми приборами искусственного освещения. В случае правильной сборки, прием возможен даже при пасмурной погоде. Кусок фольги закрепляется на фанерном или картонном листе. При попадании световых частиц на алюминий, в нем возникает электрический ток. Количество энергии напрямую зависит от площади фольги. Мощность генератора Тесла можно существенно повысить путем изготовления нескольких приемников и их параллельного соединения между собой.

После окончания сборки генератора тесла, схема должна быть подключена. Для этого контакты через конденсатор соединяются между собой. Полярность обозначена на корпусе конденсатора. Отрицательный контакт соединяется с заземлением, а положительный – прикрепляется проводом к фольге. Сразу же начнется зарядка конденсатора, после чего из него можно получать электроэнергию. Чтобы конденсатор не взорвался от избыточной энергии, в цепь устанавливается резистор, выполняющий ограничительную функцию.

Резонансный трансформатор Тесла – больше не секрет

Знакомство с трансформатором Н. Тесла.

Новомодный феномен резонансного трансформатора Николы Тесла возник не давно, а Интернет забит фотографиями и интригующими видеосъемками молний и коронарных разрядов.

Вспомним, что трансформатор первоначально был предназначен не для показательного выступления в цирке, а для передачи радиосигналов на далекие расстояния. В связи с этим предлагаю ознакомиться с его принципом работы и найти ему практическое применение.

Трансформатор Тесла состоит из двух основных частей, см. рис.1а;

1. Генерирующей части, состоящей из высоковольтного источника питания, накопительного конденсатора С1, разрядника и катушки связи L1. Частота генерации зависит от напряжения питания, емкости конденсатора С1, характеризующее время разряда, а так же промежутком между электродами разрядника;

2. Резонансной катушки индуктивности L2, заземления и сферы, см. рис. 1а.

Если вглядеться в схему этого трансформатора внимательнее, то мы увидим известную схему последовательного колебательного контура, состоящего из катушки индуктивности L2 с открытой емкостью С, образованной между сферой и землей. Это открытый колебательный контур, который был открыт Дж. К. Максвеллом.

Обратимся к классической теории принципа действия открытого колебательного контура:

Как известно колебательный контур состоит из катушки индуктивности и конденсатора. Исследуем простейший колебательный контур, катушка которого состоит из одного витка, а конденсатор представляет собой две рядом расположенные металлические пластины. Подадим в разрыв индуктивности контура 1 переменное напряжение от генератора, см. рис.2а. В витке потечет переменный ток и создаст вокруг проводника магнитное поле. Это сможет подтвердить магнитный индикатор в виде витка, нагруженного лампочкой. Для того, что бы получить открытый колебательный контур, раздвинем пластины конденсатора. Мы наблюдаем, что лампа индикатора магнитного поля продолжает гореть. Чтобы лучше понять, что происходит в данном опыте, смотри рис. 2а. По витку контура 1 течёт ток проводимости, который вокруг себя создает магнитное поле Н, а между пластинами конденсатора – равный ему, так называемый, ток смещения. Несмотря на то, что между пластинами конденсатора нет тока проводимости, опыт показывает, что ток смещения создаёт такое же магнитное поле, как и ток проводимости. Первым, кто об этом догадался, был великий английский физик Дж. К. Максвелл.

Читайте также:  СЕ генераторы последние данные

В 60-х годах 19-го столетия, формулируя систему уравнений для описания электромагнитных явлений, Дж. К. Максвелл столкнулся с тем, что уравнение для магнитного поля постоянного тока и уравнение сохранения электрических зарядов переменных полей (уравнение непрерывности) несовместимы. Чтобы устранить противоречие, Максвелл, не имея на то никаких экспериментальных данных, постулировал, что магнитное поле порождается не только движением зарядов, но и изменением электрического поля, подобно тому, как электрическое поле порождается не только зарядами, но и изменением магнитного поля. Величину где – электрическая индукция, которую он добавил к плотности тока проводимости, Максвелл назвал током смещения. У электромагнитной индукции появился магнитоэлектрический аналог, а уравнения поля обрели замечательную симметрию. Так, умозрительно был открыт один из фундаментальнейших законов природы, следствием которого является существование электромагнитных волн. В последствии Г.Герц опираясь на эту теорию доказал, что электромагнитное поле излучаемое электрическим вибратором равно полю излучаемое емкостным излучателем.

Раз так, убедимся еще раз, что происходит, когда закрытый колебательный контур превращается в открытый и как можно обнаружить электрическое поле Е ? Для этого рядом с колебательным контуром поместим индикатор электрического поля, это вибратор, в разрыв которого включена лампа накаливания, она пока не горит. Постепенно раскрываем контур, и мы наблюдаем, что лампа индикатора электрического поля загорается, рис. 2б. Электрическое поле теперь не сосредоточено между пластинами конденсатора, его силовые линии идут от одной пластины к другой через открытое пространство. Таким образом, мы имеем экспериментальное подтверждение утверждения Дж. К. Максвелла, что емкостной излучатель порождает электромагнитную волну. Никола Тесла обратил на этот факт внимание, что при помощи совсем не больших излучателей можно создать достаточно эффективный прибор для излучения электромагнитной волны. Так родился резонансный трансформатор Н. Тесла. Проверим и этот факт, для чего вновь рассмотрим назначение деталей трансформатора.

И так, сфера и заземление выполняют роль пластин открытого конденсатора. Геометрические размеры сферы и технические данные катушки индуктивности определяют частоту последовательного резонанса, которая должна совпадать с частотой генерации разрядника.

Иными словами, режим последовательного резонанса позволяет трансформатору Тесла достигать таких величин напряжений, что на поверхности сферы появляется коронарный разряд и даже молнии. Весь фокус состоит в том, что коэффициент трансформации резонансного трансформатора выше соотношения витков катушек L1/L2 и значительно выше, чем в трансформаторах с ферро сердечниками. Здесь индуктивность L2, сфера и заземление, представляют из себя открытый резонансный колебательный контур. Именно по этому трансформатор Тесла называется резонансным.

Рассмотрим работу трансформатора Тесла, как последовательный колебательный контур:

– Этот контур необходимо рассматривать как обычный LC – элемент, рис. 1а.б, а так же рис. 2а, где включены последовательно индуктивность L, открытый конденсатор С и сопротивление среды Rср. Угол сдвига фаз в последовательном колебательном контуре между напряжением и током равен нулю (φ=0), если ХL = – Хс, т.е. изменения тока и напряжения в нем происходят синфазно. Это явление называется резонансом напряжений (последовательным резонансом). Следует отметить, что при понижении частоты от резонанса, ток в контуре уменьшается, а резонанс тока несет емкостной характер. При дальнейшей расстройке контура и понижении тока на 0,707, его фаза смещается на 45 градусов. При расстройке контура вверх по частоте, он приобретает индуктивный характер. Это явление часто используют в фазоинверторах.

Если мы рассмотрим схему изображенную на рис. 3, то мы сможем предоставить простые расчеты, из которых видно, что напряжение на пластинах излучателя вычисляется исходя из добротности контура Q, которая реально может находиться в пределах 20 – 50 и много выше.

Где полоса пропускания определяется добротностью контура:

Тогда напряжение на пластинах излучателя будет выглядеть согласно следующей формуле:

В таблице 1 расчетные данные приведены для частоты 7.0 МГц не случайно, это дает возможность любому желающему коротковолновику провести радиолюбительский эксперимент в эфире. Здесь входное напряжение U1 условно взято за 100 Вольт, а добротность за 26.

Генератор свободной энергии: схемы, инструкции, описание

Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

Что представляет собой свободная энергия?

Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой. Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя. Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в бестопливных генераторах. Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, ветрогенераторы, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

Проблема сохранения энергии

Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности. Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора. С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

Схема и конструкция генератора Теслы

Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

Рис. 1: Генератор свободной энергии Тесла

Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

  • диаметр намотки;
  • сечения провода для каждой из обмоток;
  • расстояние между катушками.

Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в магнитных двигателях. А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.

Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­H.

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Последователи Николы Теслы и их генераторы

Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

Лестер Хендершот

Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.

Рис. 3: общий вид генератора Хендершота

Читайте также:  Генератор тока на операционном усилителе

Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

Джон Бедини

Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.

Рис. 4: принципиальная схема генератора Бедини

Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

  • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
  • катушка с ферромагнитным основанием и двумя обмотками;
  • аккумулятор (в данном примере он был заменен на батарейку 9В);
  • блок управления из транзистора (Т), резистора (Р) и диода (Д);
  • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.

Рис. 5: начало работы генератора Бедини

Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.

Рисунок 6: запуск обмотки подзаряда

Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

Тариель Капанадзе

Капанадзе разрабатывал модель своего генератора свободной энергии в 80 — 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.

Рис. 7: принципиальная схема генератора Капанадзе

На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.

Практические схемы генераторов свободной энергии

Несмотря на большое количество существующих схем генераторов свободной энергии совсем немногие из них могут похвастаться реальными результатами, которые можно было бы проверить и повторить в домашних условиях.

Рис. 8: рабочая схема генератора Тесла

На рисунке 8 выше приведена схема генератора свободной энергии, которую вы можете повторить в домашних условиях. Этот принцип был изложен Николой Тесла, для его работы используется металлическая пластина, изолированная от земли и расположенная на какой-либо возвышенности. Пластина является приемником электромагнитных колебаний в атмосфере, сюда входит достаточно широкий спектр излучений (солнечных, радиомагнитных волн, статического электричества от движения воздушных масс и т.д.)

Приемник подключается к одной из обкладок конденсатора, а вторая обкладка заземляется, что и создает требуемую разность потенциалов. Единственным камнем преткновения к его промышленной реализации является необходимость изолировать на возвышенности пластину большой площади для питания хотя бы частного дома.

Современный взгляд и новые разработки

Несмотря на повсеместную заинтересованность созданием генератора свободной энергии, вытеснить с рынка классический способ получения электроэнергии они еще не могут. Разработчикам прошлого, выдвигавшим смелые теории по поводу значительного удешевления электроэнергии, не хватало технического совершенства оборудования или параметры элементов не могли обеспечить надлежащего эффекта. А благодаря научно-техническому прогрессу человечество получает все новые и новые изобретения, которые делают уже осязаемым воплощение генератора свободной энергии. Следует отметить, что сегодня уже получены и активно эксплуатируются генераторы свободной энергии, работающие на силе солнце и ветра.

Но, в то же время, в интернете вы можете встретить предложения о приобретении таких устройств, хотя в большинстве своем это пустышки, созданные с целью обмануть неосведомленного человека. А небольшой процент реально работающих генераторов свободной энергии, будь то на резонансных трансформаторах, катушках или постоянных магнитах, может справляться лишь с питанием маломощных потребителей, обеспечить электроэнергией, к примеру, частный дом или освещение во дворе они не могут. Генераторы свободной энергии – перспективное направление, но их практическая реализация все еще не воплощена в жизнь.

Как работает катушка Тесла (и способы настройки)

Это сложное устройство из генератора, индуктора и ВВ ( Высоко Вольтного) резонатора. В классическом варианте генератор представляет собой источник высокого напряжения в несколько тысяч во льт, что достаточно для получения искры в воздушной среде в несколько миллиметров. Генератор через балластный дроссель заряжает конденсатор и при достижении на нем определенного напряжение происходит срабатывание разрядника и через искру энергия в виде короткого, но мощного по току импульса переходит на индуктор. Индуктор находится у основания ВВ резонатора и обычно представляет собой катушку намотанную поверх ВВ резонатора через воздушный зазор у самого основания ВВ резонатора. Индуктор мотается толстым проводом, обычно 2.5-4мм2 меди, в экспериментальных случаях без изоляции, чтобы не перематывая индуктор, а используя крокодильчик можно было бы точно подбирать количество витков. ВВ катушка мотается тонким проводом, например, 0.3мм и например на каркасе диаметром 50 мм мы будем иметь примерно 500-1000 витков провода. Витки ВВ катушки подбираются и рассчитываются. Практический обычно выясняют резонансную частоту ВВ намотки, это делают, например, по осциллографу, после подачи разрядов на индуктор. Щуп осциллографа не подключают к ВВ катушки, он будет хорошо чувствовать поле на расстоянии метр от нее по воздуху. Способов определения резонансной частоты много. Важно мотать ВВ катушку в противоположную сторону по отношению к индуктору, при этом что в какую не важно. Например, если индуктор намотан по часовой стрелке, то ВВ резонатор будет мотаться против часовой стрелки. Важна длинна намотки. В классическом варианте длинна намотки должна составлять четверть длинны электромагнитной волны соответствующей резонансной частоте. Например, если выяснилось, что собственная резонансная частота ВВ катушки 1МГц то длинна волны l=c/f (скорость света деленная на частоту) будет l=(3*10^8)/(1*10^6)=300 метров. Ну а четверть это 300/4=75 метров. Таким образом для ВВ катушки с собственной резонансной частотой 1МГц длинна провода должна быть 75 метров.

Далее по схеме, ВВ катушка естественно должна быть заземлена нижним концом, а с верхним концом могут быть варианты. Для настройки обычно конец провода оставляют открытым и торчащим в воздухе. При правильной настройке на конце будет наблюдаться плазменный разряд рассеиваемый в воздухе, длинна его может быть от миллиметров до сантиметров в зависимости от мощности. Но постольку поскольку такой разряд не самоцель на конец обычно устанавливают некоторую воздушную накопительную емкость, типа однопроводного воздушного конденсатора, обычно в виде металлического шара. Тут тоже нельзя ничего делать на абум и просто так. Чем больше емкость тем сильнее надо отматывать ВВ катушку от исходной длинны. При небольшой емкости длину ВВ намотки обычно уменьшают не более чем на 10% от исходной.

Еще раз вернемся к собственной резонансной частоте ВВ катушки. Важно понимать, что ВВ катушка вовсе не является обычной катушкой индуктивности и из-за большого количества витков и длинны намотки в четверть длинны волны (в некоторых случаях и более) ВВ катушка превращается в резонатор. При этом это многопараметровый резонатор и резонансная частота зависит не только от длинны намотки, но и от диаметра намотки и важно чтобы два этих фактора состыковывались. Частоту здесь задают и емкостные межвитковые связи и последовательный LC резонанс с емкостью на макушке и емкость образованная между катушкой и землей и длинна намотки. В целом обычно частота четвертьволновых ВВ резонаторов завязана на диаметрах. Обычно резонаторы намотанные на трубах 100 мм имеют резонансную частоту в пределах 150-450 кГц, резонаторы намотанные на трубах 50 мм имеют резонансы в районе 450-1000 кГц. Частоту ВВ резонатора можно определить даже одним осциллографом за счет приема радиоволнового фона вот по такой схеме.

Для выявления резонансной частоты активный щуп осциллографа подключают к нижнему концу катушки и наблюдают осциллограмму с разверткой 1-10 мкс/дел и на предельном уровне чувствительности. На экране должна появиться размытая синусойда, по которой можно с точностью 10-20% определить резонансную частоту. Эффект обычно хорошо проявляется при большом уровне радиоволнового шума исходящего от бытовой аппаратуры, импульсных блоков питания и при обилии радиостанций в диапазонах СВ и ДВ.

Обобщим. Включаем генератор высокого напряжения с потенциалом около 5 кВ и мощностью 10-100 Вт, далее через дроссель 0.1-1 Гн заряжаем конденсатор. При заряде конденсатора до напряжения пробоя разрядника возникает короткий, но мощный импульс тока длительностью от единиц до десятков наносекунд с током в десятки и сотни ампер (до тысяч ампер), проходящий через индуктор. Индуктор возбуждает в четвертьволновом ВВ резонаторе стоячую электромагнитную волну. У основания резонатора ток колеблется с частотой 1 МГц, но напряжение очень мало, на конце резонатора возникает пучность высокого (от единиц до десятков киловольт) переменного напряжения, которое колеблется с частотой около 1 МГц в безтоковом режиме. При правильно намотанном ВВ резонаторе всего один возбуждающий импульс может привести к десяткам и сотням плавно затухающим свободным колебаниям, чем больше добротность резонатора, тем больше колебаний в нем будет. Таким образом ВВ резонатор, как и вообще любой резонатор является аккумулятором колебательной энергии на собственной резонансной частоте. Однако, чтобы достичь сверхъединичного эффекта простого искрения на индуктор не достаточно, необходим процесс синхронизации и многое другое.

Формулы для расчета выглядят так

Белая искра с емкости трансформатора тесла в заземляющий кабель

Белая искра с емкости трансформатора тесла в заземляющий кабель. Цвет искры зависит от силы тока. При большом токе искра белая, при маленьком токе фиолетовая. Емкость способствует возникновению большого разрядного тока, чего нету на чисто четвертьволновой тесле без емкости, там искра уже фиолетовая. Помимо этого эта тесла разогнана короткими пачками импульсов звуковой частоты. Индуктор возбуждается однополярными импульсами полученными на контуре с частотой в 3 раза выше, чем частота вв резонатора, но импульсы идут с частотой четвертьволнового резонатора, здесь 450 кГц

Добавить комментарий