Коэффициент мощности двигателя: определение, способы увеличения «косинуса фи»

Косинус фи в электротехнике – это коэффициент мощности

На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности. И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше. Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Косинус фи

Как уже было сказано выше, значение косинуса фи в электротехнике – это величина, характеризующая степень линейности нагрузки. Для нее тоже существует формула:

cosφ = Nа / (√3*U*I).

Что касается величины «cosφ», то ее увеличение преследует несколько целей.

  • Основная цель – экономия потребления электрического тока.
  • Соответственно экономия цветных металлов, которые используются в обмотках электромотора.
  • Максимальное использование полезной мощности агрегата.

Хотелось бы отметить вот какой момент – производственные электрические сети всегда находятся в недогруженном состоянии. Почему? Все дело в том, что не все электродвигатели постоянно работают под нагрузкой. Любой асинхронный двигатель на холостом ходе имеет косинус фи, равный приблизительно значению 0,2. При нагрузке косинус фи увеличивается до 0,85. Почему так происходит? Все опять упирается в активную и реактивную мощности. Первая при холостом ходе мотора приблизительно составляет 30%, вторая 15%. Как только нагрузка на электрический двигатель увеличивается, тут же поднимается активная составляющая, а реактивная снижается практически до нуля. Поэтому основное требование увеличения «cosφ» – это работа предприятия с полной нагрузкой.

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

В первом случае необходимо использовать мероприятия, с помощью которых регулируются технологические процессы. Таким методом добивается оптимальный режим расходования потребляемой электроэнергии. Ко вторым, к примеру, можно отнести замену асинхронных электродвигателей синхронными, в которых реактивная мощность практически равна нулю. Она присутствует, но только на стадии запуска мотора.

Что такое косинус фи в электрике

Дата публикации: 23 августа 2018 .
Категория: Освещение.

Допустим, вы купили компрессор для полива растений или электродвигатель для циркулярной пилы. В инструкции по эксплуатации помимо основных технических характеристик (таких, как потребляемый ток, рабочее напряжение, частота вращения) вы можете обнаружить такой непонятный показатель, как косинус фи (cos ϕ). Данная информация может быть указана и на пластинке (шильдике), закрепленной на корпусе прибора. В нашей статье мы постараемся объяснить простым и доступным языком всем, даже пользователям далеким от электротехнических тонкостей, как тригонометрическая функция (знакомая нам со школьной скамьи) влияет на работу всем нам привычных электробытовых приборов, и почему ее называют коэффициентом мощности.

Важно! Все нижесказанное касается только сетей переменного тока.

Далекий от электротехники, но весьма наглядный пример

Чтобы объяснить, каким образом угол ϕ (а точнее его косинус) влияет на мощность, рассмотрим пример, не имеющий никакого отношения к электротехнике. Допустим нам необходимо передвинуть тележку, стоящую на рельсах. Чтобы удобнее было производить данную операцию, к ее передней части прикрепляем канат.

Если мы будем тянуть за веревку прямо вперед по направлению движения, то для перемещения тележки нам понадобится приложить достаточно небольшое усилие. Однако если находиться сбоку от рельсов и тянуть за канат в сторону, то для движения тележки с такой же скоростью необходимо будет приложить значительно большее усилие. Причем чем больше угол (ϕ) между направлением движения и прикладываемым усилием, тем больше «мощности» потребуется от нас.

Вывод! То есть, увеличение угла ϕ ведет к увеличению расходуемой нами энергии (при одной и той же выполненной работе).

Сдвиг фаз между напряжением и током

При использовании энергии переменного тока происходит приблизительно то же самое. При активной нагрузке (например, при включении электрочайника или лампы накаливания) переменные напряжение (U) и ток (I) полностью совпадают по фазе и одновременно достигают своих максимальных значений. В данном случае мощность потребителя электроэнергии можно рассчитать по формуле P=U•I.

Для сети переменного тока работающий электродвигатель, имеющийся, например, в стиральной машине, является комплексной нагрузкой, включающей в себя активную и индуктивную составляющие. При подаче напряжения на такой прибор оно появляется на обмотках, практически, мгновенно. А вот ток (из-за влияния индуктивности) запаздывает. То есть между ними образуется так называемый сдвиг фаз, который мы и называем ϕ.

При активно-емкостной нагрузке, наоборот, переменный ток сразу начинает течь через конденсатор, а напряжение отстает от него по фазе на величину ϕ.

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи – это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Усредненные значения коэффициента мощности

Лампы накаливания и электрические нагревательные элементы, хотя и имеют в своих конструкциях спирали, намотанные с помощью специального провода, считаются чисто активной нагрузкой для сетей переменного тока. Так как индуктивность этих элементов настолько мала, что ею, как правило, просто пренебрегают. Для таких приборов cos ϕ (или коэффициент мощности) принимают равным 1.

В разнообразных электрических ручных инструментах (дрелях, перфораторах, лобзиках и так далее) индуктивная составляющая мощности достаточно мала. Для них принято считать cos ϕ≈0,96÷0,97. Этот показатель достаточно близок к единице, поэтому его, практически, никогда не указывают в технических характеристиках.

Для мощных электродвигателей, люминесцентных ламп и сварочных трансформаторов cos ϕ≈0,5÷0,82. Этот коэффициент мощности необходимо учитывать, например, при выборе диаметра питающих проводов, чтобы они не нагрелись, и не сгорела их изоляция.

На что влияет низкий коэффициент мощности

К чему могут привести низкие показатели коэффициента мощности:

  • При низком PF возрастает потребляемый нагрузкой ток. cos ϕ=P/S=P/(U•I), следовательно I=P/(U•cos ϕ). Допустим, для конкретной нагрузки необходима активная мощность P=10000 ВА при напряжении U=220 В. В идеальном варианте PF=cos ϕ=1. Тогда ток нагрузки: I=10000/(220•1)≈45 А. При PF=0,8 I=10000/(220•0,8)≈57 А. То есть при снижении PF с 1 до 0,8 ток возрастет приблизительно на 20%. Значит, это приведет к излишним затратам на электроэнергию.
  • Снижение коэффициента мощности, и как следствие увеличение тока приводит к значительным энергетическим потерям в проводах, которые по закону Ома равны I•R², где R – активное сопротивление проводников. Для уменьшения этих потерь приходится увеличивать диаметр проводов, что опять же приводит к излишним экономическим затратам.
  • Вышеуказанные потери расходуются на выделение тепла. В этом случае придется применять более термостойкие, а следовательно, и более дорогие изоляционные материалы).

В заключении

Смело можно утверждать, что чем ближе значение PF к единице, тем эффективнее используется электроэнергия. В некоторых мощных приборах производители устанавливают специальные приспособления, которые позволяют осуществлять коррекцию коэффициента мощности.

Что такое cos f в электричестве. Определение коэффициента мощности

Как мы уже знаем из предыдущих лекций по электротехнике электрическая цепь может иметь чисто активную, реактивную и смешанную нагрузку. Угол сдвига между напряжением и током – это и есть угол φ. А косинус фи принято называть коэффициентом мощности.

При чисто активной нагрузке, например при подсоединенной лампы накаливания, косинус фи (cosφ) будет равен единице, так как угол φ равен нулю. При емкостном характере в нагрузке, протекающий ток будет опережать напряжение, а при индуктивной наоборот. Если в электрическую цепь поставить идеальную индуктивность, то угол между протекающим током и напряжением составит 90 градусов.

В рассмотренном выше примере понятие коэффициента мощности возникает из-за индуктивной нагрузки. На практике чисто индуктивная нагрузка невозможна в принципе, должно быть хоть какое-то небольшое активное сопротивление, то есть в реальных условиях нужно рассматривать смешанную нагрузку.

Коэффициент мощности в виде формулы можно записать, как отношение активной мощности (P ) к полной (S ):

Если косинус фи равен единице, то это идеальный показатель при чисто активной нагрузке, cosφ=0,9 считается очень хорошим значением, а на предприятиях пытаются достичь cosφ=0,8.

Чего пытаются достичь повышая косинус “фи”

Повышая коэффициент мощности пытаются добиться следующих основных целей:

Сокращение расходов на электрическую энергию
Экономию цветных металлов за счет уменьшения диаметра медных проводов
Максимум применения заданной мощности трансформаторов, генераторов и электродвигателей переменного тока.

Так, например, от одного и того же трансформатора можно получить больше активной мощности потребителей, при большем значении величины косинуса фи. Так, от трансформатора с номинальной по паспорту мощностью S н =1000 кВа при соsφ = 0,7 можно достичь активной мощности Р 1 = S н cosφ = 1000 0,7=700 кВт , а при cosφ = 0,95 активная мощность будет равна Р 2 = S н φ= 1000 0,95 = 950 кВт.

Причем в обоих примерах трансформатор будет нагружен полностью до 1000 кВа. Причиной малого коэффициента мощности на производствах являются недогруженные трансформаторы и асинхронные электродвигатели. Допустим, асинхронный двигатель при ХХ имеет cosφ хх равный 0,2, тогда как при загрузке до своей номинальной мощности его соsφ н = 0,85.

Для наглядности рассмотрим приближенный рисунок треугольника мощности для асинхронного двигателя. При XX асинхронный двигатель потребляет реактивную мощность, равную 30% номинальной мощности, тогда как потребляемая активная мощность составляет около 15%. Коэффициент мощности в данном случае достаточно мал. С ростом нагрузки активная мощность также растет, а реактивная меняется совсем немного и поэтому cosφ возрастает.

Читайте также:  Поражение током: как происходит удар, признаки и последствия электротравмы

Основным мероприятием, повышающим cosφ, является работа совершаемая на полную производственную мощность. В данном случае асинхронные ЭД будут работать с cosφ, близкими к номинальным величинам.

Мероприятия по повышению cosφ можно условно поделить на два основных типа:

К первому типу относятся мероприятия не требующие установки компенсирующих схем и целесообразные во всех случаях. К ним можно отнести упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению cosφ, использование синхронных ЭД вместо асинхронных. Ко второй группе относятся мероприятия связанные с использованием компенсирующих устройств и схем (искусственные методы).

Видеоурок по теме коэффициент мощности

Коэффициентом мощности, или “косинусом фи” (cos φ ), цепи называется отношение к полной мощности.

В общем случае активная мощность меньше полной мощности, то есть у этой дроби числитель меньше знаменателя, и поэтому меньше единицы.

Только в случае чисто активной нагрузки, когда вся мощность является активной мощностью, числитель и знаменатель этой дроби равны между собой, и поэтому коэффициент мощности равен единице.

Реактивная энергия потребляется нагрузкой и, если не принимать специальных мер, она будет загружать линию, идущую от генератора к нагрузке. Нельзя лишить реактивной энергии цепь, содержащую индуктивную нагрузку, но разгрузить генератор от реактивной мощности необходимо.

Чем большую часть полной мощности составляет активная мощность, тем меньше числитель отличается от знаменателя дроби и тем ближе коэффициент мощности к единице. Задача состоит в том, чтобы заставить протекать по линии к потребителю только минимально необходимую величину реактивной энергии.

Cos φ , или коэффициент мощности, измеряется особым прибором фазометром.

Пример 1. Амперметр показывает ток 10 А, вольтметр – 120 В, ваттметр – 1 кВт. Определить cos φ потребителя.

S = I × U = 10 × 120 = 1200 ВА,

Пример 2. Определить активную мощность, отдаваемую генератором однофазного в сеть, если вольтметр на щите генератора показывает 220 В, амперметр – 20 А и фазометр 0,8.

P = I × U × cos φ = 20 × 220 × 0,8 = 3520 Вт = 3,52 кВт.

S = I × U = 20 × 220 = 4400 ВА = 4,4 кВА.

Пример 3. Вольтметр, установленный на щитке электродвигателя показывает 120 В, амперметр – 450 А, ваттметр – 50 кВт. Определить z , r , x L , S , cos φ , Q .

S = I × U = 450 × 120 = 54000 ВА = 54 кВА,

Из построения треугольников сопротивлений, напряжений и мощностей для определенной цепи видно, что эти треугольники подобны один другому, так как их стороны пропорциональны. Из каждого треугольника можно найти “косинус фи” цепи, как показано на рисунке 1. Этим можно воспользоваться для решения самых разнообразных задач.

Пример 4. Определить z , x L , U , U а, U L , S , P , Q , если I = 6 А, r = 3 Ом, cos φ = 0,8 и ток отстает от по

Уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет “косинус фи”, равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют “косинус фи”, равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий “косинус фи”, чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ .

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы увеличения “косинуса фи”

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ . К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) .

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Отрезок ос , представляющий активную слагающую тока I 1 , равен:

На бирках (шильдиках) электродвигателей обязательно указана его мощность, измеряемая в ваттах, и вот такой значок «cosφ». Что обозначает косинус фи в электротехнике – это коэффициент мощности. И определяется он соотношением мощности активной к полной. При этом чем выше данный коэффициент, то есть приближается к единице, тем лучше. Потому что в данном случае реактивная мощность будет равна нулю, а, значит, будет уменьшаться потребляемое значение, что приведет к экономии электроэнергии.

Поэтому чтобы разобраться в косинусе фи, необходимо сначала разобраться со всеми этими мощностями.

Мощности в электродвигателе

Итак, полная мощность с единицей измерения вольт-ампер (ВА) – это комплексная величина, состоящая из активной мощности (действительной) и реактивной (мнимой). Если рассматривать полный показатель по формуле, то можно это отобразить вот так:

Теперь рассмотрим составляющие первой формулы. Активная мощность действует только на активных сопротивлениях, то есть она присутствует при определенных нагрузках, а, точнее сказать, когда электрический двигатель работает. Вычисляется она вот по этой формуле:

Что значит активное сопротивление? Здесь необходимо понимать, что в цепях переменного тока сопротивление выше, чем в цепях постоянного тока. Это связано со многими факторами. К примеру, это вихревые токи, которые образуются в цепи, это электромагнитное поле, это близость расположения проводников и так далее. Именно поэтому сопротивление в сетях переменного тока называют активным, а в сетях постоянного тока омическим.

Теперь, что касается реактивной мощностной составляющей. Во-первых, эта величина измеряется в вольт ампер реактивный (вар). Во-вторых, это своеобразная накопительная мощность, которая накапливается в проводниковых сетях, а потом отдается обратно в сеть. Кстати, эта величина может быть положительной или отрицательной.

Причинами появления реактивной составляющей могут быть приборы, которые выдают емкостную или индуктивную нагрузку. Рассчитывают этот показатель вот по этой формуле:

Если рассматривать полезность реактивной мощности, то она не расходуется на прямые нужды потребителя. К примеру, в электрических двигателях она не преобразуется из электрической в механическую. И хотя полезной нагрузки эта мощность не несет, без нее не может быть осуществлена полезная работа. И все же производители стараются данный показатель уменьшить, потому что повышение активной составляющей приводит к снижению реактивной, отсюда и низкий КПД оборудования или сети.

Косинус фи

Как уже было сказано выше, значение косинуса фи в электротехнике – это величина, характеризующая степень линейности нагрузки. Для нее тоже существует формула:

cos φ = N а / (√3*U*I).

Что касается величины «cosφ», то ее увеличение преследует несколько целей.

  • Основная цель – экономия потребления электрического тока.
  • Соответственно экономия цветных металлов, которые используются в обмотках электромотора.
  • Максимальное использование полезной мощности агрегата.

Хотелось бы отметить вот какой момент – производственные электрические сети всегда находятся в недогруженном состоянии. Почему? Все дело в том, что не все электродвигатели постоянно работают под нагрузкой. Любой асинхронный двигатель на холостом ходе имеет косинус фи, равный приблизительно значению 0,2. При нагрузке косинус фи увеличивается до 0,85. Почему так происходит? Все опять упирается в активную и реактивную мощности. Первая при холостом ходе мотора приблизительно составляет 30%, вторая 15%. Как только нагрузка на электрический двигатель увеличивается, тут же поднимается активная составляющая, а реактивная снижается практически до нуля. Поэтому основное требование увеличения «cos φ» – это работа предприятия с полной нагрузкой.

Мероприятия по увеличению косинуса фи

Чтобы увеличить косинус фи, можно воспользоваться двумя способами:

  • Естественным путем без установки компенсирующих приборов и устройств.
  • Искусственным путем с установкой компенсирующих агрегатов.

Очень многих впервые столкнувшихся с электротехникой обывателей пугают страшные и непонятные аббревиатуры. Таких в данной сфере превеликое множество. В данной статье мы поподробнее остановимся на одной из таких аббревиатур. Итак, представляем вашему вниманию cos φ или по другому коэффициент мощности. Также вместо этой аббревиатуры можно увидеть символ λ . Отличие между ними в том, что если указано λ , значит значение будет выражено в процентах.

cos φ или коэффициент мощности указывает на наличие или отсутствие реактивной составляющей мощности у потребителя электрической энергии. При наличии такой составляющей переменный ток и напряжение не совпадают во времени по фазе. Ток или опережает напряжение или отстает от него, в зависимости от того, какая нагрузка – емкостная или индуктивная. Емкостная нагрузка возникает при наличии в электроустановке потребителя статических конденсаторов, выпрямителей и т. д. Индуктивная нагрузка возникает при наличии в электроустановке потребителя различных катушек, пускателей, электродвигателей. В общем, большинство электроустановок, которые находятся в пользовании потребителей приводят к возникновению реактивной мощности. Чем больше угол сдвига, тем больше доля реактивной энергии в электроустановке потребителя.

Для того, чтобы понять что такое коэффициент мощности, поговорим подробнее о том, что же это за мощность, из чего она состоит и как находится.

Итак, в цепи постоянного тока определить мощность потребителя не составляет большого труда. Зная напряжение и протекающий ток, мы просто умножаем эти величины.

В цепи переменного тока все немного сложнее. Как уже говорилось ранее, как правило, при синусоидальном переменном токе изменение напряжения и тока не совпадают во времени, то есть между ними происходит сдвиг по фазе. Только в частном случае, когда вся нагрузка полностью активная, напряжение и ток совпадают по фазе. При этом угол сдвига ( φ )=0°, следовательно cos 0° = 1 . Получается, что вся энергия совершает полезную работу. Конечно это идеальный вариант. На самом деле, в подавляющем большинстве случаев электроприборы содержат в себе различные катушки, конденсаторы и т. д. В таких устройствах полная мощность раскладывается на активную и реактивную. Измеряется полная мощность в вольтамперах (ВА). Найти полную мощность можно путем умножения действующего значения напряжения на действующее значение тока.

Полная мощность определяет фактические нагрузки на систему электроснабжения, по этому пропускная способность линий электропередач, мощность трансформаторов, генераторов, стабилизаторов и т. д. указывается именно в вольтамперах, а не в ваттах.

В свою очередь полная мощность состоит из активной мощности ( Р ) и реактивной мощности ( Q ). Активная мощность – это та часть электрической энергии, которая расходуется непосредственно на совершение полезной работы (подогрев электроплиты, нагрев нити в лампе накаливания, вращение вала электродвигателя).

Читайте также:  Напряжение короткого замыкания: причины, последствия и защита от негативного явления, расчет силы тока

В этой формуле мы как раз и видим cos φ

Чем меньше угол сдвига между напряжением током, тем больше электрической энергии осуществляет полезную работу, то есть совершают нагрев воды в электрическом чайнике, или вращение вала электродвигателя. Повторимся еще раз, что в идеале угол сдвига φ = 0° , следовательно = 1 . Однако, чаще всего для нормального функционирования электроустановок, в их составе присутствуют различные катушки, конденсаторы, обмотки. Характеристикой таких потребителей является реактивная мощность.

Реактивная мощность измеряется в вольтамперах реактивных (Вар) . Данная энергия не совершает непосредственно полезную работу, но необходима для нормальной работы таких приборов, как пускатели, трансформаторы, электрические двигатели. Например, в работе трансформатора электрическая энергия с первичной обмотки передается на вторичную через электромагнитное поле. Для создания электромагнитного поля и используется реактивная энергия. При полностью индуктивной нагрузке (например, работа трансформатора в режиме холостого хода), угол сдвига фаз напряжения и тока равен 90° . Следовательно cos φ = cos = 90° = 0 . Это означает, что активная мощность будет тоже равна нулю. Получается, что никакой полезной работы не производится. При этом, вследствие потерь в магнитопроводах, на нагрев, электрическая энергия все равно расходуется, значит расходуется сырье на электростанциях, нагружаются сети, трансформаторы и генераторы.

Условно считается, что потребители, которые имеют обмотки на магнитопроводах, то есть представляют собой индуктивность, потребляют положительную реактивную мощность. О приборах, в которых имеются конденсаторы, принято говорить, что они генерируют отрицательную реактивную мощность. Синхронные генераторы, двигатели, компенсаторы способны как производить, так и потреблять реактивную мощность, то есть они способны вести себя относительно электрической сети и как емкость и как индуктивность.

Примерное значение cos φ для различных электроустановок переменного тока: 0,05-0,1 – трансформаторы в режиме холостого хода; до 1 – для нагревательных приборов и ламп накаливания; для асинхронных электродвигателей 0,7-0,9 при номинальной нагрузке. С уменьшением нагрузки электродвигателя cos φ уменьшается.

Для того, чтобы уменьшить влияние реактивной мощности на электросеть, прибегают к искусственному завышению cos φ . Для этого непосредственно у потребителя электрической энергии устанавливаются батареи статических конденсаторов. Более подробно на способах компенсации реактивной энергии можно будет ознакомиться в следующих статьях.

Коэффициент мощности косинус фи

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.

В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.

Математически cos φ

Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).

Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.

Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.

Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.

В энергетике для коэффициента мощности используются следующие обозначения cos φ либо λ. В случае если для определения коэффициента мощности используется λ, его значение выражают в %.

Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.

Короткое видео о кратким объяснением, что такое коэффициент мощности:

Повышение коэффициента мощности

Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.

Повышение cos φ преследует 3 основные задачи:

  1. снижение потерь электроэнергии;
  2. рациональное использование цветных металлов на создание электропроводящей аппаратуры;
  3. оптимальное использование установленной мощности трансформаторов, генератор и прочих машин переменного тока.

Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.

Помимо этого, компенсация позволяет обеспечить отсутствие всплесков потребляемого тока на пике синусоиды, равномерную нагрузку на питающую линию.

Основные способы коррекции cos φ

1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.

2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.

3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.

Подробное видео с объяснением, что такое cosφ :

Физическая сущность коэффициента мощности (косинуса “фи”) заключается в следующем. Как известно, в цепи переменного тока в общем случае имеются три вида нагрузки или три вида мощности (три вида тока, три вида сопротивлений). Активная Р, реактивная Q и полная S мощности соответственно ассоциируются с активным к, реактивным х и полным z сопротивлениями.

Из курса электротехники известно, что активным называется сопротивление, в котором при прохождении тока выделяется тепло. С активным сопротивлением связаны потери активной мощности ? P п , равные квадрату тока, умноженному на сопротивление d P п = I 2 r Вт.

Реактивное сопротивление при прохождении по нему тока потерь не вызывает. Обусловливается это сопротивление индуктивностью L, а также емкостью С.

Индуктивное и емкостное сопротивления являются двумя видами реактивного сопротивления и выражаются следующими формулами:

реактивное сопротивление индуктивности, или индуктивное сопротивление,

реактивное сопротивление емкости, или емкостное сопротивление,

Тогда х = хL — х c . Например, если в цепи хL= 12 Ом, хс = 7 Ом, то реактивное сопротивление цепи x=х L — хс= 12 — 7 = 5 Ом.

Рис. 1. Иллюстрации к объяснению сущности косинуса “фи”: а — схема последовательного включения r и L в цепи переменного тока, б — треугольник сопротивлений, в — треугольник мощностей, г — треугольник мощностей при различных значениях активной мощности.

Полное сопротивление z включает в себя активное и реактивное сопротивления. Для цепи последовательного соединения г и L (рис. 1 , а) графически изображается треугольником сопротивления .

Если стороны этого треугольника умножить на квадрат одного и того же тока, то соотношение сторон не изменится, но новый треугольник будет представлять собой треугольник мощностей (рис. 1,в).

Как видно из треугольника, в цепи переменного тока в общем случае возникают три мощности: активная Р, реактивная Q и полная S

P = I 2 r = UIcosфи Вт, Q = I 2 х = I 2 х L — I2xc = UIsinфи Вар, S = I 2 z = UI Ва.

Активная мощность может быть названа рабочей, т. е. она “греет” (выделение тепла), “светит” (электрическое освещение), “двигает” (электродвигатели приводят в движение механизмы) и т. д. Измеряется она так же, как и мощность на постоянном токе, в ваттах.

Выработанная активная мощност ь полностью без остатка расходуется в приемниках и подводящих проводах со скоростью света — практически мгновенно. Это является одной из характерных особенностей активной мощности: сколько вырабатывается, столько и расходуется.

Реактивная мощность Q не расходуется и представляет собой колебание электромагнитной энергии в электрической цепи. Переливание энергии из источника к приемнику и обратно связано с протеканием тока по проводам, а так как провода обладают активным сопротивлением, то в них имеются потери.

Таким образом, при реактивной мощности работа не совершается, но возникают потери, которые при одной и той же активной мощности тем больше, чем меньше коэффициент мощности (cosфи , косинус “фи”) .

Пример. Определить потери мощности в линии с сопротивлением r л = 1 ом, если по ней передается мощность Р=10 кВт на напряжение 400 В один раз при cosфи 1 = 0,5, а второй раз при cosфи2=0,9.

Решение. Ток в первом случае I1 = P/(Ucosфи 1) = 10/(0 ,4 • 0,5) = 50 А.

Потери мощности dP1 = I1 2 r л = 50 2 •1 = 2500 Вт = 2,5 кВт.

Во втором случае ток I1 = P/(Ucosфи 2 ) = 10/(0 ,4 • 0,9) = 28 А

Потери мощности dP2 = I 2 2 r л = 28 2 •1 = 784 Вт = 0,784 кВт, т.е. во втором случае потери мощности в 2,5/0,784 = 3,2 раза меньше только потому, что выше значение cosфи.

Расчет наглядно показывает, что чем выше величина косинус “фи”, тем меньше потери энергии и тем меньше нужно закладывать цветного металла при монтаже новых установок.

Повышая косинус “фи”, преследуем три основные цели:

1) экономию электрической энергии,

2) экономию цветных металлов,

3) максимальное использование установленной мощности генераторов, трансформаторов и вообще электродвигателей переменного тока.

Последнее обстоятельство подтверждается тем, что, например, от одного и того же трансформатора можно получить тем больше активной мощности, чем больше величина со sфи потребителей. Так, от трансформатора с номинальной мощностью Sн=1000 кВа при со sфи 1 = 0,7 можно получить активной мощности Р 1 = S нcosфи 1 = 1000•0,7=700 кВт, а при cosфи2 = 0,95 Р2 = S нcosфи2= 1000•0,95 = 950 кВт.

Читайте также:  Мультиметр DT 830B: подробное описание прибора, инструкция по применению, как правильно пользоваться

В обоих случаях трансформатор будет нагружен полностью до 1000 кВа. Причиной низкого коэффициента мощности на предприятиях являются недогруженные асинхронные двигатели и трансформаторы. Например, асинхронный двигатель при холостом ходе имеет cos ?хх примерно равный 0,2, тогда как при загрузке до номинальной мощности со sфи н = 0,85.

Для наглядности рассмотрим приближенный треугольник мощности для асинхронного двигателя (рис. 1,г). При холостом ходе асинхронный двигатель потребляет реактивную мощность, примерно равную 30% номинальной мощности, тогда как потребляемая активная мощность при этом составляет около 15%. Коэффициент мощности поэтому очень низок. С возрастанием нагрузки активная мощность увеличивается, а реактивная меняется незначительно и поэтому cosфи возрастает. Подробнее об этом читайте здесь: Коэффициент мощности электропривода

Основным мероприятием, повышающим значение cos?, является работа на полную производственную мощность. В этом случае асинхронные двигатели будут работать с коэффициентами мощности, близкими к номинальным величинам.

Мероприятия по повышению коэффициента мощности делятся на две основные группы:

1) не требующие установки компенсирующих устройств и целесообразные во всех случаях (естественные способы);

2) связанные с применением компенсирующих устройств (искусственные способы).

К мероприятиям первой группы согласно действующим руководящим указаниям относится упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению коэффициента мощности. К этим же мероприятиям относится применение синхронных двигателей вместо некоторых асинхронных (установка синхронных двигателей рекомендуется вместо асинхронных всюду, где требуется повышать соsфи).

Увеличение косинуса фи

Дата публикации: 25 апреля 2015 .
Категория: Электротехника.

Причины низкого “косинуса фи”

Недозагрузка электродвигателей переменного тока

При недозагрузке электродвигателя потребляемая им активная мощность уменьшается пропорционально нагрузке. В то же время реактивная мощность изменяется меньше. Поэтому чем меньше нагрузка двигателя, тем с меньшим коэффициентом мощности он работает.

Так, например, асинхронный двигатель в 400 кВт при 1000 оборотах в минуту имеет “косинус фи”, равный при полной нагрузке 0,83. При ¾ нагрузки тот же двигатель имеет cos φ = 0,8. При ½ нагрузке cos φ = 0,7 и при ¼ нагрузки cos φ = 0,5.

Двигатели, работающие вхолостую, имеют “косинус фи”, равный от 0,1 до 0,3 в зависимости от типа, мощности и скорости вращения.

Неправильный выбор типа электродвигателя

Двигатели быстроходные и большой мощности имеют более высокий “косинус фи”, чем тихоходные и маломощные двигатели. Двигатели закрытого типа имеют cos φ ниже, чем двигатели открытого типа. Двигатели, неправильно выбранные по типу, мощности и скорости, понижают cos φ.

Повышение напряжения в сети

В часы малых нагрузок, обеденных перерывов и тому подобного напряжение сети на предприятии увеличивается на несколько вольт. Это ведет к увеличению намагничивающего тока индивидуальных потребителей (реактивной составляющей их полного тока), что в свою очередь вызывает уменьшение cos φ предприятия.

Неправильный ремонт двигателя

При перемотке электродвигателей обмотчики вследствие неправильного подбора проводов иногда не заполняют пазы машины тем количеством проводников, которое было в фабричной обмотке. При работе такого двигателя, вышедшего из ремонта, увеличивается магнитный поток рассеяния, что приводит к уменьшению cos φ двигателя.

При сильном износе подшипников ротор двигателя может задевать при вращении за статор. Вместо того чтобы сменить подшипники, обслуживающий персонал иногда идет по неправильному и вредному пути и подвергает ротор обточке.

Увеличение воздушного зазора между ротором и статором вызывает увеличение намагничивающего тока и уменьшение cos φ двигателя.

Способы увеличения “косинуса фи”

Вышеперечисленные последствия низкого cos φ с достаточной убедительностью говорят о том, что необходимо вести борьбу за высокий cos φ. К мерам увеличения cos φ относятся:

  1. Правильный выбор типа, мощности и скорости вновь устанавливаемых двигателей;
  2. Увеличение загрузки двигателей;
  3. Недопущение работы двигателей вхолостую продолжительное время;
  4. Правильный и высококачественный ремонт двигателей;
  5. Применение статических (то есть неподвижных, невращающихся) конденсаторов.

Малый вес конденсаторов, отсутствие вращающихся частей, незначительные потери энергии в них, легкость обслуживания, безопасность и надежность в работе дают возможность широкого применения статических конденсаторов для повышения cos φ двигателей.

Подбирая величину емкости при параллельном соединении и емкости, можно добиться уменьшения угла сдвига фаз между напряжением и общим током при неизменной активной и реактивной мощности, потребляемой ветвью с индуктивностью. Этот угол можно сделать равным нулю. Тогда ток, текущий на общем участке цепи, будет иметь наименьшую величину и совпадать по фазе с напряжением сети.

Это явление называется компенсацией сдвига фаз и широко используется на практике.
По экономическим соображениям невыгодно доводить угол φ до нуля, практически целесообразно иметь cos φ = 0,9 – 0,95.

Рассмотрим расчет емкости конденсаторов, которые нужно включить параллельно индуктивной нагрузке, чтобы повысить cos φ до заданной величины.

На рисунке 1, а изображена схема включения индуктивной нагрузки в сеть переменного тока. Для увеличения коэффициента мощности параллельно потребителю включена батарея конденсаторов. Векторная диаграмма начинается с построения вектора напряжения U. Ток I1 вследствие индуктивного характера нагрузки отстает по фазе от напряжения сети на угол φ1. Необходимо уменьшить угол сдвига фаз между напряжением U и общим током до величины φ. Иначе говоря, увеличить коэффициент мощности от значения cos φ1 до значения cos φ.

Рисунок 1. Увеличение cos φ при помощи статических конденсаторов:
а – схема включения; б – векторная диаграмма

Отрезок ос, представляющий активную слагающую тока I1, равен:

Пользуясь выражением мощности переменного тока

отрезок ос выразим так:

Ток на общем участке цепи I равен геометрической сумме тока нагрузки I1 и тока конденсатора IC.

Из треугольника оас и овс имеем:

Из диаграммы получаем:

Так как и ab = IC , то

Вместе с этим, как было указано выше,

Пример 1. Электрические двигатели шахты потребляют мощность 2000 кВт при напряжении 6 кВ и cos φ1 = 0,6. Требуется найти емкость конденсаторов, которую нужно подключить на шины установки, чтобы увеличить cos φ до 0,9 при f = 50 Гц.

Решение.

Источник: Кузнецов М. И., “Основы электротехники” – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560 с.

Советы электрика

cosφ, холостой ход и ассинхронный двигатель

Мне много приходит писем от моих читателей и посетителей сайта, спрашивают совета, интересуются как лучше поступить в том или ином случае когда возникают затруднения в электрике для дома.

Частенько задают вопросы и по теории электротехники. Я конечно не профессор и досконально всего не знаю по теории, но в свое время у меня были хорошие преподователи по ТОЭ и хорошо “вдолбили” мне базовые знания, да я особо и не сопротивлялся)))

Поэтому на несложные вопросы могу ответить что и делаю сейчас.

В одном из писем меня спрашивают: “Почему у ассинхронного двигателя на холостом ходу низкий косинус фи?”

Потому что вся энергия, которую двигатель забирает из сети расходуется на 99% на создание магнитного поля внутри движка- намагничивание статора, создание вращающегося магнитного поля, в роторе наводится ЭДС, происходит сцепление двух магнитных полей и т.д.

Это- реактивная энергия.

Вспомним формулу косинуса фи:

По сути косинус фи (cosφ) служит показателем потребления реактивной энергии.

Сosφ показывает соотношение активной мощности к полной.

Если активная энергия (Р) расходуется на создание полезной работы, например электродвигатель приводит в движение вал токарного станка, то реактивная энергия (Q) расходуется только на создание магнитного поля.

На холостом ходу значение полезной (активной) мощности близко к нулю, а следовательно и значение косинуса фи- минимальное.

В номинальном режиме работы электродвигателя, когда к его валу подключена соответствующая наргузка, его cosφ=0,75÷0,95.

На холостом ходу- cosφ=0,08÷0,15

Поэтому и выбирают электродвигатель так, что бы он соответствовал мощности нагрузки, иначе КПД у двигателя будет низким и cosφ тоже, что приводит к излишним тратам электроэнергии.

Приведу пример: никто не будет подключать на бытовой наждак трехфазный двигатель мощностью 30 кВт если можно обойтись движком на 1-1,5кВт.

Если это сделать то такой мощный двигатель будет работать вхолостую и потреблять при этом большой ток на создание электромагнитного поля. При этом он будет зря нагружать сеть питания реактивным током, что в свою очередь приводит к увеличению потерь в проводах линии ВЛ.

Поэтому cosφ у электродвигателя должен быть максимальным.

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Отзывов: 23 на «cosφ, холостой ход и ассинхронный двигатель»

Сайт мужской. Удачи вам в продвижении сайта.

Владимир пишет:

Большое спасибо за интересную и содержательную статью! Давно не читал ничего подобного.

Георгий пишет:

Точная и грамотная статья, спасибо большое=) Приглашаю с удовольствием и на свой сайт.

Vitalik пишет:

Стоящая вещица

Владимир пишет:

в книгах по эл. технике приводилось немного другое обьяснению термина cosф

Светлана пишет:

Поздравляю с Днем Смеха, желаю улыбок, радости, веселья. Запастись чувством юмора и приобрести запас отличного настроения на весь 2012 год!

ПЕРВОЕ АПРЕЛЯ –
День весёлый смеха.
Может, Вы разыграны
Будете с успехом…

Вы не обижайтесь
Сегодня на друзей!
А шуткой озорною
Ответьте им скорей!

Сергей пишет:

Кого, блин, так волнует холостой ход асинхронного двигателя? Электроэнергию бережёт, или собрался подстанцию на дому открывать?

Елена пишет:

Слава Богу, у меня есть кому электрикой заниматься.

Sergey пишет:

Про двигатели тема интересная. Надо выбирать согласно потребностям. Хотелось бы почитать о том как подключить двигатель к сети. Спасибо!

Дмитрий пишет:

А как же с преобразователями частоты? У них ведь при частотно токовом способе регулирования поток намагничивания ограничивается, то есть ток ограничивается при маленьком скольжении, а следовательно и косинус фи должен ограничиваться.

admin пишет:

Как это можно ограничить косинус?!
Это же чисто соотношение активной мощности- к полной. Вот мощность я еще понимаю- можно ограничить.
О каком ограничении тока намагничивания вы говорите? При частотном способе изменяется частота, только и всего.
Мощность на валу остается прежней? Прежней. И из сети движок потребляет соответствено нужную мощность, так что косинус фи и преобразователь частоты тут совсем не причем.

Дмитрий пишет:

Да, верно. Я говорю про промышленный привод следящий асинхронный глубокорегулируемй ( с датчиком обратной связи- по скорости и по току) .Там меняется не только частота но и ограничивается ток при маленьком скольжении. Я имел ввиду, что потери мощности можно снизить- или нет? (если регулировать не только частоу но и ток).

admin пишет:

А про какие ПОТЕРИ мощности вообще речь идет?
У двигателя есть определенная ПОЛНАЯ мощность, которую он развивает- номинальная, предельная в кратковременном режиме и на холостом ходу.
Естественно что косинус при этом меняется- в предельном режиме он максимальный, так как двигатель выполняет максимально- возможную полезную работу и потребляемая из сети энергия преобразуется в АКТИВНУЮ по максисуму.
Самый низкий косинус- при ХХ двигателя.
При изменении частоты даже с датчиком обратной связи- меняется всего лишь скорость вращения и на потери мощности в двигателе никак не влияет.
Если вы имеете ввиду ВООБЩЕ про потери энергии при работе электродвигателя, то она выделяется в виде тепла от нагрева обмоток и подводящих кабелей и упомянутый вами промышленный привод на это тоже не влияет.
Даже если с помощью частоты ограничивать ток, а следовательно и частоту вращения при изменении нагрузки, то реактивная составляющая останется все равно неизменной- согласитесь, на намагничивание магнитопровода статора надо будет строго дозированный реактивный ток, неизменный по величине.
То есть с помощью частоты регулируется всего лишь скорость вращения и не более того.
На косинус фи влияет нагрузка на валу электродвигателя. Вот как то так

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: