Инфракрасная паяльная станция своими руками: устройство, принцип работы, примеры создания

ИК паяльная станция своими руками v2

Около двух лет назад я разместил статью ИК паяльная станция своими руками. Данная статья вызвала интерес у многих радиолюбителей. Но к сожалению после повторения ИК паяльной станции не обошлось без замечаний в плане работы станции, которые я постарался устранить в данной версии станции:
– применены аналоговые усилители термопары AD8495 со встроенной компенсацией холодного спая, в следствие чего увеличена точность показания температуры
– проблема с выходом из строя транзисторов нижнего нагревателя решена при помощи симисторного регулятора мощности
– доработана прошивка (которая совместима с прошлой версией станции). После запуска термопрофиль начинает выполняться с той температуры, до которой преднагрета плата, что экономит много времени. Отдельная благодарность Андрею за корректировку и адаптацию прошивки под китайские дисплеи.
– добавлен вакуумный пинцет
– корпус паяльной станции полностью переработан. Конструкция станции получилась очень симпатичной, более устойчивой и надежной, на рабочем столе занимает меньше места. В одном корпусе совмещено все необходимое, – нижний нагреватель, верхний нагреватель, вакуумный пинцет и сам контроллер.

Описание конструкции

Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор PT100. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже.

Для свинецсодержащего припоя максимальная температура термопрофиля: – 1 термопрофиль – 190C о , 2 – 195C о , 3 – 200C о , 4 – 205C о , 5 – 210C о , 6 – 215C о , 7 – 220C о

Для безсвинцового припоя максимальная температура термопрофиля: – 8 термопрофиль – 225C о , 9 – 230C о , 10 – 235C о , 11 – 240C о , 12 – 245C о , 13 – 250C о , 14 – 255C о

Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптации контроллера для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

Контроллер начинает выполнять термопрофиль с той температура, до которой преднагрета плата. Это очень удобно, и позволяет оперативно перезапустить термопрофиль в случае, например, если была температура недостаточна для снятия чипа, то можно выбрать термопрофиль с температурой повыше, и тут же снять чип со второй попытки.

На схеме применен комбо силовой блок, состоящий из транзисторного ключа для верхнего нагревателя, и симисторного для нижнего нагревателя. Хотя, например можно использовать 2 транзисторных, или 2 симисторных ключа.

Я использовал 2 готовых модуля на AD8495, купленных на Aliexpress. Правда модули нужно немного доработать. Смотрим фото ниже.

Не обращаем внимания на то, что модуль на втором фото повернут на 90 градусов. Пришлось развернуть, так как модули у меня упирались в силовой блок. Разъемы для термопар использованы заводские.

Тем, кто не планирует в дальнейшем использовать платиновый терморезистор, то часть схемы выделенную красной пунктирной линией можно не собирать.

Печатные платы силового блока и контроллера.

Для охлаждения силовых ключей я применил радиатор от видеокарты с активным охлаждением.

Далее на фото будет виден этап сборки паяльной станции, как конструктора. Все материалы куплены в крупном строймагазине. Передняя и задняя панель сделаны из стеклотекстолита, укрепленного алюминиевым уголком. Базальтовый картон служит в качестве теплоизоляционного материала. Нижний подогрев состоит из 9 галогенных ламп (1500вт 220-240в R7S 254мм) объединенных в 3 группы по 3 соединенных последовательно лампы.

Провод для 220В применен силиконовый, высокотемпературный.

Хороший вакуумный насос можно приобрести на Aliexpress за 400-500 рублей. Ориентир для поиска на фото ниже.

Изначально я планировал использовать паяльную станцию совместно и ИК стеклом над нижним нагревателем, что давало хорошие преимущества:
– красивый внешний вид
– плату (на стойках можно ложить прямо на стекло), как у станций Термопро
Но увы, недостатки оказались весомее:
– очень долгий нагрев (остывание) платы
– очень сильно разогревается корпус паяльной станции, к примеру без стекла корпус во время работы едва теплый. Так что от стекла пришлось отказаться.

С открученным штативом стекло легко вынимается, или вставляется в станцию. Так же вместо стекла можно вставить, например, сетку.

Внешний вид собранной станции.

Аксессуары, стойки, алюминиевый швеллер для стоек, ручка вакуумного пинцета, силиконовая трубка для пинцета, термопара.

Необходимые “ингредиенты” для изготовления ручки вакуумного пинцета. Использован смеситель от эпоксидного клея Момент в сдвоенном шприце. Алюминиевая трубка(в которой необходимо просверлить отверстие) и соединитель соответствующего диаметра для силиконовой трубки. Все вклеено в алюминиевую трубку эпоксидным клеем момент.

Для верхнего нагревателя очень рекомендую ELSTEIN SHTS/100 800W.

Настройка контроллера
Резистором R32 необходимо установить напряжение 5,12В на выходе U4. Резистором R28 настраиваем контрастность дисплея. Если не планируете использовать платиновый терморезистор, то настройка станции закончена.
Описание калибровки канала с платиновым терморезистором описано в статье первой версии станции.

Рекомендации
Верхний нагреватель необходимо устанавливать на высоте 5-6 см от поверхности платы. Если в момент выполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса – понижаем мощность верхнего нагревателя(включаем станцию с нажатым энкодером и устанавливаем максимальную мощность верхнего нагревателя). Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA обязательно нужно накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим фото тепловых пятен ИК нагревателей ELSTEIN в статье первой версии станции).
В общем смотрим видео ниже.
Ниже вы можете скачать архив с печатной платой в формате LAY, исходным кодом, прошивкой.


Инфракрасная паяльная станция

Беспрерывное совершенствование паяльной техники обусловлено появлением более сложных печатных плат радиоэлектроники. Инфракрасная паяльная станция (ИПС) предназначена для работы с новым поколением чувствительных микросхем и других радиодеталей. Необычный подход к пайке основан на применении светового луча в инфракрасном диапазоне в качестве носителя тепловой энергии.

Особенности и преимущества

Особенностью ИК паяльной станции является то, что, в отличие от индукционного устройства, в работе отсутствует материальный контакт с радиодеталью, по сравнению с феном, нет давления воздушного потока. Весь процесс пайки происходит полностью в бесконтактном режиме.

К преимуществам ИПС надо отнести следующие достоинства:

  • в отличие от других конструкций, инфракрасный паяльник обеспечивает быстрый монтаж или, наоборот, снятие припоя в условиях полного контроля уровня нагрева обрабатываемой радиодетали;
  • сфокусированный пучок инфракрасного излучения позволяет точечно направить тепловой энергопоток в нужное место платы;
  • ИПС даёт возможность установить режим ступенчатого роста температуры нагрева в рабочей зоне;
  • инфракрасная пайка надёжно восстанавливает нарушенное соединение площадки микросхемы с печатной платой;
  • отсутствие припоя и флюса в работе станции позволяет сохранять рабочее место в чистоте и не засорять плату каплями олова и кристаллами присадки.

Виды ИПС

По типу инфракрасного излучателя различают два вида ИПС:

Керамические

Примером керамической инфракрасной паяльной станции является модель Achi ir6000. Станция обладает массой достоинств. Она зарекомендовала себя как надёжное, прочное и долговечное оборудование. Рабочая температура в зоне пайки достигается в течение 10 минут. В станциях такого типа используется сплошной плоский или полый керамический излучатель.

Кварцевые

В отличие от керамического паяльника, кварцевая станция достигает максимального нагрева за 30 секунд. Кварцевые станции очень чувствительны к частым циклам включения – выключения.

Внимание! Если специфика паяльного режима требует в течение короткого периода нескольких отключений оборудования, то лучше пользоваться керамической паяльной станцией.

Принцип действия

Чтобы понять действие инфракрасной паяльной станции, надо понимать принцип соединения микропроцессора с печатной платой. Микросхемы ноутбуков и различных электронных устройств не имеют выводных ножек. Вместо этого на их тыльной стороне расположена сетка из контактных точек. Такая же решётка есть на печатной плате.

На обеих поверхностях контакты покрыты легкоплавкими шариками. Во время пайки микропроцессор нагревается инфракрасным излучателем до температуры плавления припоя. В то же время нижняя поверхность платы нагревается ТЭНами нижней платформы станции. Прогревом контактных соединений с двух сторон достигается быстрая пайка радиодетали. Благодаря узконаправленному потоку тепла, высокая температура не успевает распространиться на другие компоненты платы.

Важно! Станция с помощью программного обеспечения может осуществлять различные ступени температурного режима в определённых промежутках времени.

Описание процесса ИК-пайки

Процесс инфракрасной пайки состоит из нескольких фаз:

  1. Печатную плату помещают на платформу станции.
  2. Её фиксируют боковыми упорами и дополнительными рейками.
  3. Вокруг монтажного участка пластиковые элементы закрывают клейкой фольгой.
  4. На высоте 3-4 см от микросхемы устанавливают инфракрасный излучатель.
  5. Термопару на гибкой трубке подводят непосредственно к месту пайки.
  6. С помощью кнопок на интерфейсах термоконтроллеров задаются режимы работы верхнего и нижнего нагревателя.
  7. К месту пайки подводят светильник на стальном гибком шнуре.
  8. Включают станцию нажатием стартовой кнопки.
  9. По истечении заданного времени микропроцессор снимают с платы с помощью пинцета.
  10. Таким же образом, только в обратном порядке, монтируют новый микропроцессор.

Конструктивные особенности

Инфракрасная паяльная станция представляет собой довольно габаритное оборудование:

  • ширина – 450-475 мм;
  • высота – 430-450 мм;
  • глубина – 420-450 мм.
  • высота опорного штатива ИК излучателя – 200 мм.

Дополнительная информация. Размеры различных моделей станций могут немного отличаться от вышеуказанных данных. Площадь рабочего стола рассчитана на печатные платы максимальной величины и любой конфигурации.

Расположение органов управления и подвижных узлов ИК станции:

  1. Рабочий стол представляет собой углублённую платформу из ряда ТЭНов, закрытую металлической сеткой.
  2. Параллельные упоры с фиксаторами передвигаются по направляющим. Ими с обеих сторон зажимают печатную платформу.
  3. Поперечные борта оснащены винтовыми опорами, которые поддерживают плату на нужной высоте.
  4. В комплекте есть рейки, которыми дополнительно крепят плату.
  5. На вертикальной опоре установлен поворотный механизм, на котором закреплен инфракрасный нагреватель.
  6. ИК излучатель может передвигаться в прямолинейном направлении по направляющим штатива. Одновременно паяльник может поворачиваться вокруг вертикальной опоры.
  7. На передней панели оборудования расположены:
  • кнопка включения;
  • разъём для термопары;
  • кнопка остановки;
  • клавиша включения вентилятора рабочего стола;
  • включатель подсветки;
  • кнопка верхнего охлаждения;
  • термоконтроллер нижних нагревателей;
  • программируемый контроллер верхнего ИК нагревателя.

Температура верхнего ИК нагревателя может достигать от 220 до 270 градусов. Нижняя платформа прогревается до 150-1700 С.

Изготовление своими руками

Высокая стоимость ИК паяльной станции (60-150 тыс. руб.) стимулирует домашних мастеров к изготовлению такого оборудования самостоятельно. При наличии определённого опыта сделать своими руками самодельный инфракрасный паяльник вполне реально. Материальные затраты обычно не превышают 10 тыс. руб. Нужно подготовить материалы и компоненты, необходимые для сборки ИК станции.

Детали для самодельного прибора

Для сборки инфракрасной паяльной станции своими руками понадобится следующее:

  • лист жести;
  • гибкая спиральная металлическая трубка светильника;
  • рычажный штатив от старой настольной лампы;
  • галогеновые лампы;
  • оцинкованная мелкая сетка;
  • алюминиевый профиль в виде узких реек;
  • 2 термопары;
  • плата Ардуино Mega 2560 R3;
  • плата SSR 25-DA2x Adafruit MAX31855K – 2 шт.;
  • адаптер постоянного тока 5 вольт, 0,5 А;
  • провода.

Сборка

Монтаж паяльной станции состоит из нескольких этапов:

  1. Термостол;
  2. Инфракрасный нагреватель;
  3. ПИД-регулятор на Ардуино.

Термостол

Делать термостол своими руками желательно в условиях оборудованной домашней мастерской. Конструкция представляет собой нижний нагреватель, состоящий из следующих компонентов:

  • корпус, отражатель, лампы;
  • система крепежа платы;
  • гибкая трубка термопары;
  • светильник.
Корпус
  1. Основу термостола изготавливают в виде рамы из Г-образного жестяного профиля. Можно полосы металла согнуть уголком. Ножницами делают вырезы и по ним сгибают металл, соединяя части саморезами.
  2. Проём закрывают металлической сеткой. Чтобы она не прогибалась, над сеткой протягивают металлические прутки в поперечном и продольном направлениях.

  1. Старый галогеновый светильник разбирают, освобождая отражатель от ламп. Его обрезают по внутреннему периметру корпуса.
  2. Лампы возвращают на место. Нагреватель вставляют в опорную раму снизу.

Система крепежа платы

Алюминиевую рейку разрезают на несколько отрезков. В них просверливают монтажные отверстия.

Два отрезка профиля закрепляют на широких бортах корпуса, в канавках которых будут передвигаться винтовые фиксаторы поперечных реек. Всё станет понятно из нижнего фото.

Гибкая трубка термопары

Спиральную металлическую трубку устанавливают в одном из углов рамы, протягивают провода термопары. Длина трубки должна обеспечивать доступ термопары ко всей рабочей зоне станции.

Светильник

На конце гибкой трубки закрепляют патрон с пятивольтовой лампочкой с отражателем. Основание металлического шланга крепят в углу рамы так же, как и в предыдущем случае.

Читайте также:  Как проверить динистор мультиметром: тестовая схема на примере тиристора ку 202н, проверка без выпаивания

Верхний нагреватель

Инфракрасный излучатель состоит из двух элементов, это:

  1. Керамическая пластина в корпусе.
  2. Держатель.

Керамическая пластина в корпусе

Пластину можно приобрести на рынке электротехники или заказать на сайте интернет-магазина. Главное – сделать прочный корпус, в котором был бы обеспечен свободный приток воздуха. Как это сделать, видно на фото.

Дополнительная информация. Вмонтированный в верхнюю плоскость корпуса ИК пластины кулер от компьютера поможет предохранить радиодеталь от перегрева.

Держатель

Для держателя идеально подходит двухсекционный кронштейн настольного светильника. Основание кронштейна крепят к раме станции. Верхний поворотный шарнир соединяют с корпусом верхнего нагревателя.

ПИД-регулятор на Ардуино

Сделанная ИК станция своими руками обязательно комплектуется блоком управления. Для него нужно сделать отдельный корпус. Внутри помещают плату Ардуино и ПИД регулятор. Примерная схема компоновки деталей блока управления станцией видна на фото.

Микропроцессорная платформа Arduino Mega 2560 R3 управляет режимами нагрева керамического ИК излучателя и платформы термостола. К плате Ардуино присоединены провода вентиляторов (верхний и нижний), ПИД регулятора, термопар и светильника.

Программирование паяльной станции осуществляется через интерфейс контроллера. Его экран отражает текущий процесс нагрева печатной платы с обеих сторон.

Тестер

В роли тестера выступают термопары. Они, в конечном счёте, являются источниками информации о состоянии уровня нагрева тыльной стороны печатной платы и верхней поверхности микропроцессора.

Работа на практике

Перед началом работы важно правильно настроить ИК паяльную станцию.

Настройка

После того, как закрепили печатную плату на термостоле и подвели ИК излучатель к микропроцессору, переходят к настройке работы станции. Делают это с помощью клавиш интерфейсов термоконтроллеров верхнего и нижнего нагревателей.

На дисплее контроллёра нижнего нагрева вверху отражается текущая температура. Кнопками на нижней строке задают конечную величину степени прогрева печатной платы.

Программируемый контроллер верхнего нагрева располагает 10-ю опциями (термопрофилями). Термопрофиль отражает зависимость температуры от времени. То есть прогрев можно запрограммировать ступенчато. Каждый шаг задаёт определённое время, в течение которого температура не меняется.

Сложность в работе

Инфракрасные паяльные станции серийного производства просты в работе и понятны в управлении. Сложности в работе станции могут возникнуть по причине несоответствия реальных характеристик станции данным в сопроводительной документации. За это отвечает изготовитель оборудования согласно гарантийным обязательствам.

Для людей, занимающихся ремонтом современных электронных устройств в домашних условиях, самодельная инфракрасная паяльная станция – первая необходимость. Приобретать профессиональное оборудование имеет смысл для мастерских, где есть большие объёмы ремонтных работ.

Видео

Устройство и сборка своими руками инфракрасной паяльной станции

В настоящее время все электронные устройства содержат в конструкции сложную начинку из множества компонентов. Время от времени возникает необходимость в ремонте таких устройств.

Ремонт обычно заключается в замене неисправных деталей на новые. И если раньше возможно было просто обойтись для этого паяльником, то с появлением компонентов в корпусах BGA, даже использование термовоздушной пайки не всегда успешно.

Специалисты применяют ик паяльник или паяльную станцию, излучающую инфракрасные волны.

Описание процесса ИК-пайки

Проблема при работе с компонентами в корпусах BGA заключается в необходимости нагреть и расплавить сразу большое количество шариков припоя.

При нагревании их, некоторое количества тепла за счет теплопроводности материалов отдается на монтажную плату. Того тепла, которое дает паяльная станция, становится недостаточно.

Увеличение времени нагрева или повышение температуры не лучшим образом сказывается на микросхеме. Она может перегреться и выйти из строя.

Решение напрашивается само собой – нужно предварительно разогреть монтажную плату снизу, не воздействуя теплом на микросхему. Разогревать можно как потоком воздуха, так и спокойным инфракрасным излучением.

В результате, когда температура материала платы поднимется, уменьшится теплоотвод с ножек контактов и понадобится меньшая температура и меньшее время воздействия для того, чтобы расплавить шарики припоя.

При использовании инфракрасной пайки для нижнего прогрева используют специальные устройства – термостолы. В этом состоит принцип работы инфракрасной паяльной станции.

Инфракрасная пайка заключает в себе множество преимуществ перед термовоздушной. Если при термовоздушной пайке возможно контролировать только скорость истечения воздуха из сопла и температуру нагревательного элемента, и совершенно невозможно управлять оттоком воздуха, то при инфракрасной пайке контролю поддается температура припоя на протяжении всего цикла работ.

Применение инфракрасной паяльной станции позволяет более точное воздействие на определенную область платы, что затруднительно при пайке горячим воздухом.

А при ремонтных работах задача как раз и состоит в том, чтобы заменить один или несколько компонентов схемы, совершенно не воздействуя на другие.

Модель ИК-650 ПРО

Одной из наиболее распространенных инфракрасных паяльных станций профессионального уровня является ИК-650 ПРО. В России это устройство стало одним из первых, способных с успехом производить ремонт техники с BGA схемами.

Пайка производится настолько качественно, что возникло устойчивое мнение об абсолютной надежности устройств, платы которых монтировались при помощи этой инфракрасной паяльной станции.

Программное обеспечение позволяет очень точно выдерживать температурный профиль, что немаловажно для создания прочных, надежных контактов. Ведь для качественной пайки необходимо не просто создать температуру достаточную для плавления припоя, а нужно еще поднять ее плавно и затем плавно понизить, не допуская резкого охлаждения контакта.

Только тогда будет создана прочная кристаллическая решетка в капле припоя, соединяющей контакт микросхемы с монтажным пятачком.

Инфракрасная станция имеет модульную конструкцию и позволяет собрать множество возможных конфигураций для производства предварительных и вспомогательных работ:

  • возможно использование различного типа термостолов;
  • подключение электронного микроскопа;
  • автоматическое регулирование температуры нагрева и остывания;
  • существуют дополнительные модули для восстановления выводов BGA (это называется реболлингом).

В комплектацию паяльной станции входит также вакуумный пинцет, которым удобно устанавливать мелкие детали на плате.

Стоимость инфракрасной паяльной станции ИК-650 ПРО в настоящее время более 150 000 рублей. Она является профессиональным оборудованием и, конечно же, для любительского использования практически недоступна.

Детали для самодельного прибора

Имеющиеся в продаже инфракрасные паяльные станции отечественного и зарубежного производства представлены в продаже очень широко, но цены на них начинаются от 20 000 рублей. И при минимальной цене, это будет инструмент не самого лучшего качества.

При необходимости производства работ с BGA-корпусами в условиях стесненности в средствах выходом может стать самодельная инфракрасная паяльная станция.

Собрать ее можно из деталей инфракрасных станций, имеющихся в продаже, а также из подручных материалов и старых отслуживших свой срок приборов.

Термостол для паяльной станции можно изготовить из светильника или нагревателя с галогеновыми лампами, которые будут нагревать плату до необходимой температуры. Верхний нагреватель и контроллер паяльной станции придется приобрести из запасных частей, покупая их новыми или бывшими в употреблении.

Штатив для верхнего нагревательного блока можно изготовить из опоры от старой настольной лампы.

Для термостола необходимо запастись галогеновыми лампами и отражателями-рефлекторами. Их помещают в корпус, который можно изготовить самостоятельно из алюминиевого профиля и листового металла.

Кроме ламп, в корпусе необходимо предусмотреть место для крепления термопары, которая будет «снабжать» информацией о температуре ламп модуль управления.

Температура должна выдерживаться точно, чтобы платы не растрескивались от избыточного тепла и резких перепадов температуры.

Сборка

Инфракрасную головку мощностью около 400-450 Вт, необходимо закрепить на штативе, используя крепеж, элементы которого легко приобрести в торговой сети, для контроля температуры верхнего нагревательного узла необходимо применить вторую термопару.

Она должна быть установлена вместе с нагревателем. Кабель можно проложить в гибком металлорукаве. Штатив паяльной станции необходимо крепить таким образом, чтобы ИК-головка могла свободно перемещаться над всей поверхностью.


На корпусе термостола необходимо предусмотреть кронштейны для фиксации платы. Она должна располагаться на несколько сантиметров выше галогеновых ламп. Для кронштейнов можно применить подходящие алюминиевые профили.

Контроллер для инфракрасной паяльной станции помещается в корпус, который можно изготовить самостоятельно из листового металла, лучше из оцинкованной стали.

При необходимости в корпус можно встроить такие же вентиляторы охлаждения, какие используются в корпусе компьютера.

После сборки самой конструкции предстоит отладка всей схемы инфракрасной паяльной станции. Это производится опытным путем, многократно запуская схему и производя замеры. Процесс нелегкий, но после настройки он даст свои результаты – паяльная станция будет работать правильно.

Бесконтактный паяльник

Если острой потребности в использовании инфракрасной паяльной станции нет, то для пайки может быть с успехом применен инфракрасный паяльник. Внешне он похож на обычный с той разницей, что вместо жала имеет нагревательный элемент.

Применение и устройство

Инфракрасный паяльник используется в условиях, когда контакт с выводами компонентов недопустим. Удобно им пользоваться и для пайки радиодеталей, так как часто у обычного паяльника на жале образуется нагар, и соединения получаются некачественными. Нагар приходится счищать, а на эти действия уходит порой довольно много времени.

В условиях домашней мастерской можно сделать простейший самодельный инфракрасный паяльник из прикуривателя автомобиля. Нагревательный элемент этого устройства отлично подойдет для изготовления инструмента.

Так как для нормальной работы прикуривателя нужен постоянный ток напряжением 12 Вольт, соответствующий бортовой электросети автомобиля, понадобится электропреобразователь, чтобы можно было использовать бытовую сеть переменного тока. Для этих целей можно с успехом применить блок питания для корпусов компьютеров.

Изготовление

Чтобы собрать инфракрасный паяльник, необходимо извлечь нагревательный элемент из корпуса прикуривателя. Далее к его контактам необходимо присоединить питающие провода. К центральному контакту, соответствующему «плюсу» автомобильной сети, можно подвести любой медный провод в изоляции.

К «рубашке» элемента, контактирующей в автомобиле с массой, необходимо подвести медный одножильный провод сечением не менее 2,5 кв. мм. К этому проводу уже можно припаять другой гибкий медный проводник.

Соединение необходимо изолировать на расстоянии примерно 2-3 см от нагревательного элемента, одев на соединение термоусадочную трубку. ПВХ изоляционную ленту использовать не стоит, так как она может расплавиться.

Для корпуса инфракрасного паяльного инструмента необходимо использовать любой стержень из тугоплавкого материала. Можно даже использовать неисправный паяльник, закрепив нагревательный элемент прикуривателя на жало.

Для этой цели используют стальные затягивающиеся хомуты. При этом необходимо следить, чтобы два питающих провода не соприкасались друг с другом неизолированными отрезками. Устройство соединяется с блоком питания гибким кабелем или электрошнуром достаточной длины.

Очевидно, что использование такого паяльника возможно только при пайке неответственных соединений, так как контролировать характеристики в процессе работ крайне затруднительно.

Инфракрасная паяльная станция своими руками

Радиолюбителям рано или поздно приходится сталкиваться с пайкой элементов посредством массива шариков. BGA способ пайки используется повсеместно в массовых производствах различной техники. Для монтажа используется инфракрасный паяльник, который производит соединение деталей бесконтактным способом. Готовые модификации стоят дорого, а более дешевые аналоги не обладают достаточным функционалом, поэтому возможно изготовить паяльник в домашних условиях.

Описание процесса ИК пайки

Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

  • Нижний нагреватель.
  • Верхний нагреватель, отвечающий за основное воздействие на материалы.
  • Конструкция держателя платы, размещенная на столе.
  • Контроллер температуры, состоящий из программируемого элемента и термопары.

Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность. Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

  • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
  • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
  • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
  • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.

Инфракрасная паяльная станция своими руками

Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или собирается из старых запасных частей.

Инструменты для изготовления инфракрасного паяльника

Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла. При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

Читайте также:  Правила перемещения в зоне шагового напряжения: радиус опасного участка, способ безопасного выхода за контур

Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой. Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

Нижний подогрев

Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп. Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату. Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

Верхний подогрев

Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами. Для инфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

Блок управления

Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

Детали для самодельного прибора

Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

  • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
  • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
  • Шланг от душевой лейки для проводов, алюминиевые уголки.
  • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
  • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
  • Винты, разъемы и дополнительные периферии.

Инфракрасная паяльная станция своими руками на основе Arduino

В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

Применение и устройство

Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам. Применяется при замене мелких деталей, основным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы. Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

Инфракрасная паяльная станция промышленного производства

Работа устройства происходит при питании 12 вольт, такое напряжения возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

Изготовление

Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент. К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не составит большого труда, достаточно изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов. Важно понимать, что подобного рода устройство используется при незначимых работах, так как температурные пороги, другие параметры не контролируются.

Создание инфракрасной паяльной станции в домашних условиях

Многие радиолюбители не могут подобрать подходящий инструмент для ежедневной пайки различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Виды паяльных станций

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов аппаратуры для пайки с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.

Устройства для пайки, позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.

Самодельная инфракрасная паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции для пайки компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.

После полной сборки инфракрасной станции для проведения паяльных работ следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.

Рекомендации по работе

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

Основными рекомендациями при сборке станций и работе на них являются:

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.
Читайте также:  Поражение током: как происходит удар, признаки и последствия электротравмы

Заключение

ИК паяльные станции – это одни из лучших установок для пайки всевозможных элементов в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.


Инфракрасная паяльная станция своими руками: устройство, принцип работы, примеры создания

ИК паяльная станция с цифровым управлением.

Автор: Black
Опубликовано 09.09.2010

В данной статье описывается, как самостоятельно изготовить инфракрасную паяльную станцию с небольшими затратами. Устройство позволяет производить монтаж/демонтаж SMD и BGA компонентов на печатной плате. Данная паяльная станция рассчитана на работу с большими платами (например, материнские платы персональных компьютеров или ноутбуков), чего не позволяют делать дешевые “поделки” китайского производства, которые рассчитываются как правило, на работу с небольшими печатными платами и элементами.
Так уж случилось, что в настоящее время происходит массовый переход на поверхностный монтаж, и ничего с этим не поделаешь. Всё бы ничего, паяльник еще справляется, но вот только не с BGA (взгляните хотя бы на материнскую плату вашего компьютера, чип есть, а выводов нет: Вернее их не видно). Такие микросхемы паяются полным прогревом вместе с платой. Методов пайки существует не много, как правило, это горячий воздух или ИК излучение. У каждого метода есть свои достоинства и недостатки. Но в любом случае требуется прогрев платы, в чём и заключается сложность пайки таких микросхем “на коленке”. Связано это с тем, что при нагреве небольшого участка платы происходи её расширение (выпучивание нагреваемого участка), что может привести к повреждению межслойных проводников и отрыву контактных площадок. Поэтому, необходим прогрев всей платы (не до температуры пайки, но где-то на 2/3 от неё). Подробнее от процессе ручной пайки BGA можно прочитать на сайтах посвященных ремонту компьютерной техники.
Данное устройство будет полезно многим радиолюбителям занимающимся ремонтом аппаратуры, компьютерной и видео техники. А так же тем, кто просто собирает разные схемы из деталей, выпаянных из старых плат.
Устройство позволяет монтировать/демонтировать и просто пропаивать BGA-компоненты, восстанавливая контакт, так же при помощи данного устройства можно легко “потрошить” любые платы “на детали”, что помогает избавиться от “лишнего”.
Теперь о самом устройстве и принципе его работы. Устройство состоит из самой установки и блока управления, который выполнен в отдельном корпусе. На установке имеется место крепления плат и два нагревателя. Верхний нагреватель имеет возможность изменять своё положение относительно закрепленной платы. В качестве нижнего нагревательного элемента я использую конфорку для электроплиток мощностью 2 кВт и диаметром 220 мм. А в качестве верхнего 4 трубчатые галогеновые лампы по 150 Вт каждая и длинной по 78мм. Выглядит это примерно вот так:

О конструкции корпуса смотрите отдельную инструкцию, там более-менее подробно описан процесс сборки и даны размеры заготовок. Материал преимущественно листовая сталь от старых компьютерных корпусов, в них применялась сталь толщиной порядка 1 мм, не то что в современных: В принципе для верхнего нагревателя подойдёт и 0,3-0,5 мм, а для нижнего желательно потолще, т.к. плитка штука не лёгкая. В качестве связующего звена использованы винты и гайки M3 c шайбами. Штатив выполнен из двух стальных реек снятых со старого матричного принтера (направляющие блока печатающей головки).
Блок управления выполнен на МК ATmega16, тактируемого от внутреннего RC-генератора частотой порядка 8 МГц. В качестве индикатора в схеме применён широко распространённый двух строчный ЖК-модуль с контроллером HD44780 (и совместимыми). Рассмотрим принципиальную схему:

Схема состоит из блока усилителей термопар, МК с дисплеем, клавиатурой и звуковым сигнализатором, схемы детектора нуля, силовой части и блока питания. Блок усилителей собран на ОУ DA1 и DA2, вместо LM358 допускается использовать LM2904. Далее сигналы поступают на АЦП МК.
МК имеет типовую обвязку в виде клавиатуры и дисплея. LC-цепочка L1 C11 питает внутреннюю схему АЦП МК. Резистором R35 устанавливается контрастность дисплея. На плате выведены сигналы для внутрисхемного программирования (ISP). К МК так же подключен пьезокристаллический звуковой излучатель BQ1. Небольшое примечание по поводу подключения дисплея, в зависимости от производителя в дисплеях могут быть поменяны местами контакты 1 и 2 (питание) и еще возможно понадобится установить гасящий резистор в цепи подсветки (вывод 15 дисплея).
Схема детектора нуля имеет два варианта, что бы, так сказать, облегчить повторяемость. Выбор варианта зависит от применяемого вами блока питания, если блок питания трансформаторный, то проще использовать схему выделенную пунктиром, а при использовании импульсного БП придётся собирать схему на оптопаре U1. В моём блоке управления применён трансформаторный БП.
Блок питания. Можно применить как импульсный БП с выходными напряжениями +5В и +12В, так и трансформаторный с интегральными стабилизаторами 7805 и 7812, включенных по типовой схеме. В трансформаторном БП делается доработка в виде дополнительного диода (VD6) сразу после диодного моста и перед фильтрующим конденсатором (см. схему обведённую пунктиром). Блок питания должен обеспечивать ток порядка 1А по обоим каналам.
Силовая часть состоит из двух одинаковых каналов на симисторах VS1 и VS2. Имеется два варианта управления ими, это через оптосимисторы (схема показана пунктиром) и через импульсные трансформаторы (их параметры указаны на схеме). Распиновка симисторов так же показана на схеме. Допускается применение симисторов импортного производства. Симисторы необходимо устанавливать на радиаторы т.к. выделяемая мощность составляет примерно 5-10 Вт. Неоновая лампа HL1 устанавливается вне блока управления поближе к нижнему нагревателю (в корпусе установки) и сигнализирует о включении нижнего подогрева. Для работы с оптосимисторами или трансформаторами прошивки РАЗЛИЧАЮТСЯ.
Так же к силовой части можно отнести схему управления вентилятором, на фото выше этого вентилятора не видно, он выполнен в виде отдельного “фена” и предназначен для охлаждения места пайки, это позволяет сделать пайку более качественной.
В данной схеме применяется метод “беспомехового” регулирования мощности, то есть путём “пропускания” полупериодов сетевого напряжения, количество пропускаемых полупериодов определяет мощность. Данный метод хорош тем, что он не даёт импульсных помех на электросеть, но при работе с лампами накаливания есть недостаток – это мерцание. В принципе это не критично и работе не мешает.
В программе для автоматического регулирования температуры используется алгоритм ПИД-регулятора.
Немного фотографий моего варианта блока управления:

Кстати, на фотографиях печатной платы присутствует кварцевый резонатор, и разводка несколько отличается, связано это с тем, что это первый вариант и в нём присутствует порт RS-232 для соединения с компьютером. Он требовался для отладки программы в процесс её написания. Для работы самой программы точность тактового генератора не требуется, т.к. для отсчёта времени (секунд) используется частота сетевого напряжения, чего вполне достаточно.
Глядя на схему и программу, можно подумать, что она еще на стадии разработки, что не далеко от истины, дело в том что задумывалось больше чем реально сделано, но как показала практика текущих функций хватает для многих задач и что бы понять чего бы еще такого доделать, требуется какое-то время поэксплуатировать устройство: Так же я надеюсь на Вас уважаемый читатель, что вы подскажете, каким образом можно улучшить функциональность и удобство работы с этим инструментом.
Несколько фото того что получилось:

Блок питания, оптосимисторы и выходные симисторы располагаются отдельно. Изначально на основной плате присутствовали транзисторы VT1 и VT2, теперь их нет т.к. удалось достать оптосимисторы. Решение с импульсными трансформаторами считаю не очень надёжным и красивым, т.к. есть некоторые сложности в их намотке – требуется хорошая изоляция первичной и вторичной обмоток, а кольца имеют предел по количеству намотанного на них изолятора. Но если достать оптосисмисторы не удаётся, всегда есть вариант с трансформаторами.
ВНИМАНИЕ: При монтаже выходных симисторов и их радиаторов (особенно применяя болтовые TC122, которые имеют электрический контакт с радиатором) помните, что они находятся под высоким напряжением и их требуется располагать, так что бы они ГАРАНТИРОВАНО, не могли замкнуть на корпус (если он металлический) и другие проводники схемы. Провода силовых цепей должны быть рассчитаны на ток порядка 10А.
В моём случае в корпусе блока управления установлен вентилятор, в принципе на практике нагрев симисторов не такой сильный, как мне казалось при разработке, но всё же рекомендую установить, при длительной работе возможен перегрев.
Вот фото процесса работы (верхний нагреватель выключен и сдвинут в сторону):

На фото происходит пропайка видеочипа компьютерной видеокарты (частая их неисправность заключается в повреждении пайки из-за перегрева), фольга используется для ограничения площади воздействия верхнего нагревателя.
Для соединения нагревателей с блоком управления у меня используются провода от старых утюгов, они в данном случае подходят наилучшим образом, т.к. имеют подходящее сечение проводников и термостойкую изоляцию.
В конструкции применяются термопары K-типа от недорогих мультиметров, удалось достать отдельно небольшое количество у продавцов таких мультиметров, т.к. приборы оказались бракованными. Термопары при работе располагаются в зоне пайки и должны прижиматься к плате, для нижнего нагревателя снизу, для верхнего непосредственно в зоне пайки. Прижим обеспечивается очень легко, это связано с тем, что провода термопар, как правило, гибкие и в тоже время достаточно упругие.
Теперь о процесс сборки блока управления. После монтажа всех элементов на плате (включая МК) тщательно проверяется качество монтажа. Затем можно перейти к прошивке МК, для этого лучше и безопаснее использовать лабораторный (не штатный источник питания) или питать от компьютера через программатор. Для прошивки я использую программатор PonyProg (https://www.lancos.com/prog.html). Напомню, что при работе с PonyProg сначала нужно откалибровать программу, затем прочитать (!) фьюзы, загрузить прошивку (HEX), загрузить данные для EEPROM (EEP) (для этого в окне проводника меняем тип файла), прошить (Write Device), опять открыть вкладку с фьюзами, установить их (как именно см. ниже), записать. Для удачной прошивки МК советую следовать этой последовательности.
BootLock12 = 1 (галки нет)
BootLock11 = 1 (галки нет)
BootLock02 = 1 (галки нет)
BootLock01 = 1 (галки нет)
Lock2 = 0 (галка есть)
Lock1 = 0 (галка есть)

OCDEN = 1 (галки нет)
JTAGEN = 1 (галки нет)
SPIEN = 0 (галка есть)
CKOPT = 1 (галки нет)
EESAVE = 1 (галки нет)
BOOTSZ1 = 1 (галки нет)
BOOTSZ0 = 1 (галки нет)
BOOTRST = 1 (галки нет)

BODLEVEL = 0 (галка есть)
BODEN = 0 (галка есть)
SUT1 = 0 (галка есть)
SUT0 = 0 (галка есть)
CKSEL3 = 0 (галка есть)
CKSEL2 = 1 (галки нет)
CKSEL1 = 0 (галка есть)
CKSEL0 = 0 (галка есть)

Далее, проверяем работоспособность подачей питания, на дисплее должно отобразиться приветствие (с коротким звуковым сигналом) и затем появиться сообщение об ошибке. Это нормально, так и должно быть. Далее следуйте Инструкции по настройке и эксплуатации паяльной станции (находится в приложении).
Подробно о сборке моего варианта можно прочесть в Инструкции по сборке установки, но это лишь один из многих вариантов, и далеко не самый идеальный, поэтому имеет лишь рекомендательный характер. Например, проще и быстрее для нижнего подогрева использовать готовый галогеновый прожектор, он конечно имеет более малую площадь, но за то ничего мастерить не нужно. Или наоборот использовать сверху и снизу кварцевые ИК излучатели с высокой эффективностью, но с ними уже сложнее.
Еще одно немаловажное замечание, при работе с галогеновыми лампами помните, что их нельзя включать со следами жира на колбе (от этого они могут расплавиться или взорваться), поэтому перед включением тщательно обезжириваем бензином или ацетоном. И еще при работе очень рекомендую обзавестись хорошими очками от солнца, они вам очень пригодятся! Удачи!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: