ПБВ трансформатора: устройство анцапфы, принцип работы, эксплуатация и ремонт

Устройство и принцип работы реечного переключателя обмоток ПБВ у силового трансформатора

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

В статье про приемо-сдаточные испытания трансформатора ТМГ11-1600 я рассказывал, что переключение ответвлений обмоток у силового трансформатора осуществляется с помощью переключателя ПТРЛ.

Регулирование ступеней напряжения производится в ручную на стороне высокого напряжения (ВН) в пределах от -5% до +5% (ступенями по 2,5%) от номинального напряжения 6-10 (кВ) без возбуждения (ПБВ), т.е. при обязательном отключении силового трансформатора от сети, причем, как по высокой стороне (ВН), так и по низкой (НН).

Регулирование напряжения по высокой стороне (ВН) позволяет упростить конструкцию переключателя из-за меньших токов по сравнению с обмоткой низкого напряжения (НН). Кроме того, обмотка высокого напряжения (ВН) имеет гораздо больше витков, а значит регулирование напряжения можно осуществлять гораздо точнее.

В основном, переключатели ответвлений выполняют на 3 или 5 ступеней регулирования, среднее положение у которых всегда соответствует номинальному напряжению.

При проведении очередных приемо-сдаточных испытаний у подобного трансформатора, правда чуть меньшей мощности (ТМЗ-630/10У1), у нас не проходили полученные значения омических сопротивлений обмоток ВН постоянному току, т.е. разница в измеренных сопротивлениях между фазами была существенная и значительно превышала норматив в 2%, причем на всех положениях переключателя ПБВ.

ПУЭ, Глава 1.8, п.1.8.16.4 и ПТЭЭП, Приложение 3, п.2.5:

РД 34.45-51.300-97 «Объем и Нормы испытаний электрооборудования», 6-ое издание, п.6.8:

В связи с этим было решено слить масло, вскрыть крышку трансформатора и проверить контакты в переключателе ПБВ. Вот я и решил заодно показать Вам устройство и принцип работы переключателя, как говорится не на словах, а на деле.

В рассматриваемом трансформаторе ТМЗ-630/10У1 установлен переключатель ПБВ реечного типа.

Помимо переключателей реечного типа, существуют переключатели и барабанного типа, но о них я расскажу Вам как-нибудь в другой раз, по мере подходящего случая.

Реечный переключатель расположен внутри трансформатора (в масле) прямо под крышкой бака, а его рукоятка выведена наружу.

Как я и говорил в начале статьи, переключение ответвлений обмоток происходит по высокой стороне (ВН).

Вот высоковольтные вводы (ВН) трансформатора.

А вот их вид, но уже при слитом масле внутри бака трансформатора.

Заодно покажу Вам и низкую сторону (НН).

Мне не удалось найти чертеж конструкции переключателя именно нашего трансформатора ТМЗ-630/10У1. Зато на глаза мне попался чертеж аналогичного (похожего) реечного переключателя ПТРЛ с 6 выводами на каждую фазу.

ПТРЛ расшифровывается, как:

  • П — переключатель
  • Т — трехфазный
  • Р — реечный
  • Л — лимбовый привод

Как видите, конструкция реечного переключателя обмоток ПБВ достаточно простая. На нижней неподвижной рейке установлены 18 выводов (6 на каждую фазу).

К каждому выводу подключено соответствующее ответвление от обмотки, согласно ниже представленной схемы («звезда» без нуля — Y).

Над неподвижной рейкой расположена подвижная рейка, на которой установлены 3 контактных перемычки (на каждую фазу своя перемычка).

Подвижная рейка соединена с валом ручного привода, при повороте которого она перемещается с определенным шагом через зубчатый сегмент и замыкает своими контактами (перемычками) соответствующие выводы ответвлений обмоток.

Фиксация положения рукоятки переключателя на определенной ступени осуществляется специальным фиксирующим устройством, расположенным на баке трансформатора.

Вернемся к нашей проблеме, по причине которой омическое сопротивление первичных обмоток постоянному току имели неодинаковые значения и выходили за рамки нормы.

Согласно руководства по эксплуатации реечных переключателей, пружины, прижимающие подвижный контакт (перемычку) должны быть сжаты на 1/3 длины от их разжатого состояния, а винты, сжимающие пружины должны быть законтрагаены. Видимо, со временем длительной эксплуатации гайки немного ослабли и, соответственно, ослаб сам контакт, что и давало разброс параметров по омическому сопротивлению.

В итоге сжимающие пружины и гайки затянули соответствующим образом, после чего все замеры пришли в норму.

Помимо представленной в статье схемы первичной обмотки «звезда» без нуля (Y), существует и схема «треугольника» (Д), причем переключение обмоток которой осуществляется аналогичным реечным переключателем с 6 выводами на фазу.

Ниже представлено еще две схемы, где переключение обмоток также происходит с помощью реечного переключателя ПТРЛ, но только с 5 выводами на фазу.

Схема соединения ответвлений обмоток по схема «звезда» без нуля (Y):

Схема соединения ответвлений обмоток по схема «звезда» с нулем (Y0):

Теперь Вы представляете себе устройство реечного переключателя и как происходит переключение обмоток трансформатора. Если у Вас напряжение в сети снизилось (увеличилось) меньше (больше) предельно-допустимого значения, то переключив ступени переключателя ПБВ можно привести выходное напряжение силового трансформатора в нормируемое значение.

Принцип работы реечного переключателя ответвлений обмоток у трансформатора более наглядно продемонстрирован в видеоролике.

Переключатель ПБВ – краткая характеристика, особенности эксплуатации

Переключатель ПБВ служит для регулировки напряжения силового трансформатора с целью поддержания требуемой величины напряжения у потребителей, питающихся от данного силового трансформатора. Рассмотрим вкратце принцип работы переключателя ПБВ.

Как известно, величина напряжения прямо пропорциональна количеству витков обмотки силового трансформатора. Изменяя количество витков обмотки, изменяется коэффициент трансформации и соответственно напряжение на данной обмотке. Переключатель ПБВ представляет собой устройство, осуществляющее ступенчатое переключение между ответвлениями витков обмотки трансформатора.

ПБВ – переключение без возбуждения, то есть данным устройством осуществляется изменение величины напряжения при полном отключении трансформатора от питающей сети.

Устройство ПБВ может быть установлено как на обмотке высокого напряжения, так и на обмотке низкого напряжения. ПБВ устанавливается преимущественно на обмотке высокого напряжения по нескольким причинам.

Основное преимущество установки устройства ПБВ на обмотке высокого напряжения заключается в том, что на данной обмотке ток значительно ниже, чем во вторичной обмотке низкого напряжения и соответственно сам переключатель ПБВ, устанавливаемый на стороне высокого напряжения, более компактный и проще конструктивно. Кроме того, большее количество витков на обмотке высокого напряжения позволяет более точно выбрать ступени регулировки напряжения.

Изменение напряжения на вторичной обмотке понижающего трансформатора происходит по причине изменения напряжения питания, поступающего на обмотку высокого напряжения. В связи с этим также предпочтительнее устанавливать переключатель ПБВ на обмотку ВН – как обмотку, на которой происходит изменение напряжения.

Устройство ПБВ в большинстве типов трансформаторов позволяет регулировать напряжение на обмотке низкого напряжения в пределах от ?5 % до +5 %. На силовых трансформаторах малой мощности регулировка напряжения в пределах данного диапазона осуществляется при помощи двух ответвлений, а на более мощных трансформаторах – посредством переключения между четырех ответвлений, которые осуществляют регулировку напряжения шагом 2,5 %. Существуют отдельные типы силовых трансформаторов, в которых переключатель ПБВ имеет больший диапазон регулировки напряжения и соответственно большее количество ступеней переключателя.

Как переключать ПБВ силового трансформатора

Как и упоминалось выше, ПБВ – это переключение без возбуждения. Поэтому при необходимости регулировки напряжения на трансформаторе в первую очередь необходимо снять нагрузку с трансформатора и полностью отключить его от сети. Также для безопасности выполнения работ должен быть обеспечен видимый разрыв со всех сторон, с которых может быть подано напряжение на трансформатор, а также установлены защитные заземляющие устройства.

Переключатель ПБВ имеет, как правило, ручной привод и фиксатор, препятствующий самопроизвольному смещению рукоятки привода. Также ПБВ конструктивно имеет устройство, обеспечивающее фиксацию переключателя строго в выбранном положении, что позволяет избежать плохого контакта ответвлений в выбранном положении переключателя.

Для перевода ПБВ в другое положение необходимо освободить фиксатор привода и повернуть ручку привода в необходимое положение переключателя и вернуть фиксатор в исходное положение.

Переключатели ПБВ, конструктивно имеющие электропривод, переключаются дистанционно подачей управляющих импульсов. При этом данными переключателями можно управлять и в ручном режиме.

При необходимости изменения напряжения у потребителя необходимо учитывать, что при помощи ПБВ можно изменять напряжение на обмотке низкого напряжения в небольшом пределе (от ?5 % до +5 %). В случае возникновения ситуации, когда в сети наблюдаются значительные отклонения напряжения, изменение напряжения осуществляется на питающей подстанции либо на более крупных объектах, если отклонения напряжения наблюдаются у большего количества потребителей.

Преимущества и недостатки

Переключатель ПБВ является более компактным и простым в устройстве и соответственно более надежным, по сравнению с устройством регулировки напряжения под нагрузкой (РПН).

Читайте также:  Принцип работы и особенности датчиков температуры, классификация и область применения

Основной недостаток ПБВ – необходимость полного снятия напряжения с силового трансформатора для производства цикла переключения ответвлений. В связи с этим силовые трансформаторы с ПБВ применяются преимущественно в сетях, где требуется нечастая регулировка напряжения, как правило, во время сезонных изменений нагрузки, а также при условии, что категория надежности электроснабжения потребителей позволяет осуществить кратковременное обесточивание трансформатора.

В то же время при питании потребителей от двух независимых источников (или двух трансформаторов) или наличии резервного источника питания данным недостатком можно пренебречь, так как в таком случае при необходимости переключения устройства ПБВ можно кратковременно перевести нагрузку на другой источник питания.

Еще одним недостатком является окисление контактов ответвлений переключателя ПБВ в процессе эксплуатации силового трансформатора. Окисление контактов приводит к увеличению сопротивления контактируемых поверхностей и в конечном итоге это может привести к аварийной ситуации – к внутреннему повреждению или срабатыванию газовой защиты (при наличии таковой). Во избежание данной негативной ситуации рекомендуется не менее двух раз в год отключать трансформатор от сети и делать несколько циклов переключений устройством ПБВ для удаления окисной пленки с поверхности всех контактов.

Другие способы изменения напряжения

Помимо переключателей ПБВ для изменения напряжения используются устройства РПН, которые позволяют регулировать напряжение под нагрузкой. Устройства РПН позволяют изменять напряжение на вторичной обмотке в более широком диапазоне.

Для более эффективной работы устройства РПН могут иметь конструктивно токоограничивающие реакторы или токоограничивающие резисторы.

На силовых трансформаторах может быть реализовано автоматическое регулирование напряжения (АРН). Эта функция реализуется устройством РПН, которое управляется в автоматическом режиме специальными устройствами РЗА.

Существует еще один способ регулировки напряжения – последовательное включение к трансформаторам регулировочных (вольтдобавочных) трансформаторов. Данный способ более дорогостоящий и сложный в реализации, поэтому в энергетике практически не применяется.

Переключение без возбуждения – ПБВ трансформатора

В некоторых случаях возникает необходимость изменения характеристик трансформатора в процессе эксплуатации. Рассмотрим особенности конструкции и принцип действия ПБН трансформаторов, порядок регулировки, диапазон действия и прочие сопутствующие вопросы.

Что такое ПБВ

Термин ПБВ трансформатора означает переключение без возбуждения. Данное устройство позволяет регулировать показатели напряжения силовых трансформаторов для обеспечения заданных характеристик потребляющего оборудования.

Переключение производится при условии полного отключения агрегата от нагрузки.

Конструкция, принцип действия

ПБВ включает следующие элементы:

  • избиратель – переключатель между ответвлениями;
  • приводной механизм.

В зависимости от конструкции и мощностных характеристик трансформатора, переключатель может приводиться в действие посредством ручного или механизированного привода. Механизированный привод предусматривает непосредственное и дистанционное включение.

При ручном приводе переключение производится с помощью рукоятки, выведенной за корпус агрегата.

К конструкции указанных переключателей предъявляются следующие требования:

  • обеспечение надлежащей температуры контактных и токоведущих элементов при прохождении через них электрического тока;
  • способность выдерживать прохождение тока при коротком замыкании;
  • показатель ресурса в пределах до 2 тысяч переключений;
  • надёжную изоляцию.

Данное устройство может устанавливаться для изменения количества работающих витков на входной и выходной катушке.

Учитывая, что параметры напряжения на выходе определяются количеством витков в выходной и входной обмотке, переключатель изменяет данную характеристику на одной из катушек, позволяя добиться необходимого результата.

Как проводится регулировка

Порядок проведения регулировки предусматривает следующие операции:

  • в начальном положении витки замкнуты, согласно нахождению замыкающих элементов избирателя;
  • агрегат отключается от напряжения;
  • поворотом рукоятки или включением механизированного привода перемещается замыкающий элемент избирателя с изменением рабочего количества витков на обмотке;
  • агрегат включается в сеть.

Переключение производится на необходимое значение, согласно требуемым характеристикам потребляющего оборудования.

Классификация

В зависимости от особенностей конструктивного устройства, различают переключатели следующих типов:

  • с ручным или механизированным приводом;
  • непосредственного или дистанционного включения;
  • однофазного и трёхфазного;
  • барабанного, оборудованные контактом в виде кольца, сегмента или ламели;
  • реечного.

Устройства могут предназначаться для использования в агрегатах различного напряжения и силы тока.

Преимущества и недостатки

ПБВ – компактный и простой переключатель, в чём преимущество данного устройства перед РПН, переключающими трансформатор без снятия нагрузки.

К недостаткам следует отнести необходимость полного отключения агрегата для проведения регулировки. Но данным минусом можно пренебречь, если оборудование запитано от двух трансформаторов, один из которых выступает в роли резервного.

Также недостатком устройства является высокая степень окисления замыкающих контактов в процессе эксплуатации. Данная особенность составляет проблему, если переключение производится не слишком часто. Поэтому устройство нуждается в проведении периодическом техническом обслуживании.

Применение ПБВ позволяет добиться следующих положительных результатов:

  • улучшить режим энергоснабжения потребителей;
  • увеличить допустимые потери напряжения;
  • повысить качественные характеристики электрического напряжения, подающегося на запитанное оборудование.

Простота конструкции обеспечивает высокую степень надёжности устройства.

На какие проценты может регулироваться напряжение

Переключатель предоставляет возможность регулировки напряжения в пределах до 5 процентов в каждую сторону, с шагом в 2,5 процента.

Защита ПБВ

Чтобы исключить самопроизвольное срабатывание переключателя, устройство снабжается фиксатором, освобождаемым при включении. Данный элемент не позволяет ПБВ переключиться произвольно, тем самым предотвращая нештатные ситуации.

Надёжность эксплуатации достигается регулярным техническим обслуживанием. Выход из строя может быть обусловлен следующими обстоятельствами:

  • недостаточной плотностью прилегания элементов;
  • ослабеванием регулировочных контактов;
  • снижением прочности элементов в ходе эксплуатации по причине некачественной пайки.

В результате повреждённые места перегреваются, что может вызвать выход агрегата из строя. В процессе технического обслуживания места контактов очищаются от оксидной плёнки, покрывающей элементы со временем с помощью растворителя или бензина.

По завершении обслуживания устройство испытывается.

Применение ПБВ позволяет изменить характеристики напряжения, выдаваемого трансформатором на выходе. Это устройство намного проще, чем РПН, но для переключения требует отключения агрегата от нагрузки.

ПБВ трансформатора: устройство анцапфы, принцип работы, эксплуатация и ремонт

В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так как

В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.

Переключение без возбуждения

Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформатора в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторов средней и большой мощности с помощью четырех ответвлений по 2,5 % на каждое. [1]

Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом ввиду большего количества витков отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, ток на стороне высшего напряжения меньше и переключатель получается более компактным. [2]

При переключении ответвлений обмотки при отключения трансформатора переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки. [2]

Переключатели числа витков без возбуждения

Переключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при выключенном трансформаторе.

Может оказаться, что давление контактов поддерживается с помощью некоего пружинного приспособления, которое может вызывать некоторую вибрацию. Если переключатели числа витков без возбуждения находятся в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с разрушением и окислением материала в точке контакта. При этом происходит разогревание, которое приводит к осаждению пиролитического углерода, который ещё более увеличивает контактное сопротивление и снижает степень охлаждения. В конечном счёте наступает неконтролируемая ситуация, и трансформатор может отключить механизм газовой защиты или может наступить еще более тяжелое последствие; происходит короткое замыкание. Во избежание этого жизненно важно, чтобы работа с переключателем числа витков проводилась в отключенном от сети состоянии, по полной программе, несколько раз в течение регулярного технического обслуживания, с протиркой контактных поверхностей начисто перед возвратом его обратно в заданное положение. [3]

Читайте также:  Ethernet розетка: монтаж, схема распиновки разъема RJ45 и подключение интернет-кабеля

Естественно, то же правило имеет силу, если переключатель числа витков без возбуждения отключается от работы на долгий период.

Регулирование под нагрузкой

Данный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле.

Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления.

Переключатели числа витков под нагрузкой

Уже в 1905 – 1920 годах были придуманы приспособления для перехода между переключателями числа витков трансформатора без прерывания тока.

Работу переключателя числа витков под нагрузкой можно понять по двум показательным функциям. Это переключающее устройство, которое переносит проходную мощность трансформатора от одного переключателя числа витков трансформатора к соседнему переключателю числа витков. Во время этой операции оба переключателя числа витков соединены посредством переходного сопротивления. В этой фазе оба переключателя числа витков имеют общую токовую нагрузку. После этого соединение с предыдущим переключателем числа витков прерывается, и нагрузка переносится на новый переключатель числа витков. Приспособление, которое выполняет такое переключение, называется контактором.

Соединения с парой переключателей числа витков, которые производит контактор, может потребовать смены целого ряда переключателей числа витков регулирующей обмотки для каждой операции. Это функция переключателя числа витков. Выбор производится переключателем числа витков без прерывания тока.

Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янцена (Jantzen) по имени изобретателя. Принцип Янцена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор.

Применение реактора является альтернативой принципу Янцена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части.

В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это случит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке.

С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной.

Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания.

В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном.

Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора.

Автоматическое регулирование напряжения

Переключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в системах, соединенных с трансформатором. Совсем необязательно, что целью всегда будет поддержка постоянного вторичного напряжения. Внешняя сеть может также испытывать падение напряжения, и это падение также должно быть компенсировано.

Оборудование управления переключателем числа витков не является частью самого переключателя числа витков; оно относится к релейной системе станции. В принципе переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычные функции координации между различными трансформаторами внутри одной и той же станции являются частью технологии переключателей числа витков. Когда разные трансформаторы соединены прямо параллельно, их переключатель числа витков должен двигаться синхронно с обоими трансформаторами. Это достигается тем, что один трансформатор имеет обмотку как ведущий трансформатор, а другой – как подчиненный трансформатор. Одновременная работа не будет возможна, если имеется небольшой интервал между циркулирующими токами обоих трансформаторов. Однако это не имеет никакого практического значения.

Последовательные регулировочные трансформаторы

Для регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы, которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже, чем РПН.

Ответы на вопросы о трансформаторах.

За время работы нашей компании, а это, на минуточку, более 15 лет, нами был накоплен ценный опыт, который помогает в решении повседневных сложных задач наших заказчиков, и которым мы бы хотели поделиться с пользователями нашего сайта. Благодаря рубрике «Вопрос-ответ» мы производим обратную связь с нашими клиентами, и некоторые вопросы нам показались интересными. Одни вопросы задают очень часто, другие – не очень, однако, в любом случае, мы приняли решение осветить в данной статье те моменты, которые, безусловно, являются очень важными в процессе повседневной эксплуатации трансформаторов.

Итак, начнем с вопросов, которые являются ключевыми. На эти вопросы мы отвечали не раз, однако, они по-прежнему волнуют многих наших посетителей:

– На каком принципе основывается работа трансформатора?

Ответ: В основе принципа действия любого трансформатора лежит явление электромагнитной индукции. Т.е. явлении, связанном с возникновением электрического тока в замкнутом контуре трансформатора.

– Что такое анцапфа?

Ответ: Анцапфа – это, так называемый, переключатель ПБВ (сокр., переключение без возбуждения). В силовом трансформаторе такой переключатель устанавливается со стороны высшего напряжения (ВН) и предназначается, в первую очередь, для изменения коэффициента трансформации. При изменениях высшего напряжения в пределах +- 10% от номинального значения, анцапфа позволяет поддерживать напряжение на вторичной обмотке постоянным. Переключение положения ПБВ (анцапфы) необходимо производить только при отключенном трансформаторе (снимая напряжение на стороне ВН).

– Почему сердечник трансформатора изготавливают из нескольких изолированных пластин, а не из цельного куска стали?

Ответ: Сердечник трансформатора изготавливается с использованием изолированных пластин для уменьшения или практически полного исключения потерь, вызываемых протеканием вихревых токов. Таким образом, благодаря сердечнику из изолированных пластин, общая сумма потерь, будет в разы ниже, чем потери при использовании цельного сердечника. Стоит отметить, что сердечник может быть изготовлен цельным, однако, обязательным условием является высокое удельное сопротивление материала (это могут быть, например, ферритовые сплавы).

Читайте также:  Поиск неисправностей и самостоятельный ремонт компьютерного блока питания

– Зачем пластины сердечника трансформатора стягиваются шпильками?

Ответ: Сделано это для того, чтобы обеспечить максимально плотное прилегание изолированных пластин друг к другу, а также, чтобы сделат ь пакет пластин сердечника прочным и достаточно устойчивым к механическим повреждениям.

– Что такое холостой ход трансформатора? Как трансформатор работает в этом режиме?

Ответ: Режим холостого хода трансформатора – это такой режим работы трансформатора, при котором одна из его обмоток запитана от источника переменного тока (напряжения) (линия электропередач), а цепи остальных обмоток разомкнуты. В реальности, такой режим работы встречается у трансформатора, в случае, когда он подключен к сети, а нагрузка, запитываемая от его вторичной обмотки, ещё не подключена.

За время ведения рубрики «Вопрос-ответ» нам не раз приходилось вникать в тонкости частных проблем, возникающих у пользователей. Часто, вопросы задают студенты, или просто люди сомневающиеся, как, например, в следующих вопросах:

– Что происходит на вторичных обмотках трансформатора в случае понижения напряжения на первичной обмотке трансформатора?

Ответ: Напряжение на вторичных обмотках трансформатора снижается строго пропорционально коэффициенту трансформации.

– Мы имеем в собственности шесть смежных земельных участков без электричества, однако, рядом проходит ЛЭП на 380В. Для целей электропитания будущих строений, мы собираемся приобрести понижающий трансформатор. Пожалуйста, подскажите какой выбрать?

Ответ: Для начала, необходимо определить планируемую суммарную мощность потребления. Здесь, следует учесть возможность увеличения количества потребителей (и соответственно увеличения потребления). Затем присылайте заявку нам, а мы, по Вашим данным, подберем подходящий вариант понижающего трансформатора.

Нам также задают вопросы, которые косвенно касаются выбора трансформатора. Можно назвать их «вопросы от любознательных». И хотя информацию по таким вопросам, часто, можно найти в открытом доступе, мы охотно идем навстречу:

– От чего зависит межповерочный интервал трансформаторов тока?

Ответ: Сроки межповерочных интервалов трансформаторов устанавливаются, непосредственно, заводом-изготовителем, исходя из характеристик данной конкретной модели трансформатора. Как правило, межповерочный интервал трансформатора составляет 4 года.

– Что означают обозначения обмоток защиты 5Р и 10Р на трансформаторе?

Ответ: Обозначения 5Р и 10Р применяются для отображения погрешности релейной защиты в 5% и 10% соответственно.

– Трансформатор тока и трансформатор оперативного тока – в чем разница?

Ответ: Главное отличие состоит в назначении этих трансформаторов. Трансформаторы тока предназначаются для преобразования тока до таких значений, которые были бы удобны для измерения, а, следовательно, используются для подключения различного измерительного оборудования. Трансформатор оперативного тока предназначается для питания различных цепей управления оборудованием (реле, приводы, и т.п.), автоматики, а также сигнализации и защиты.

– Чем отличаются трансформаторы с изолированной нейтралью и глухо заземленной нейтралью?

Ответ: В цепях трансформаторов с глухозаземленной нейтралью, вторичную обмотку соединяют по схеме «звезда с нулевым выводом», и поэтому такой трансформатор имеет 4 вывода. Один из выводов – нулевой. При этом, он соединен с контуром заземления. В цепях трансформаторов с изолированной нейтралью, используют схему соединения вторичной обмотки – «звезда», выводов при этом получается 3. Трансформаторы с глухозаземленной нейтралью, при обрыве одной из фаз – безопаснее, а с изолированной – не прекращают подачу электроэнергии.

Регулирование напряжения трансформаторов

Для нормальной работы потребителей необходимо поддерживать определенный уровень напряжения на шинах подстанций. В электрических сетях предусматриваются способы регулирования напряжения, одним из которых является изменение коэффициента трансформации трансформаторов.

Известно, что коэффициент трансформации определяется как отношение первичного напряжения ко вторичному, или

где w1 w2 – число витков первичной и вторичной обмоток соответственно.

Обмотки трансформаторов снабжаются дополнительными ответвлениями, с помощью которых можно изменять коэффициент трансформации. Переключение ответвлений может происходить без возбуждения (ПБВ), т.е. после отключения всех обмоток от сети или под нагрузкой (РПН).

Рис.1. Схема регулирования напряжения ПБВ:
а – ответвления вблизи нулевой точки обмотки ±5% с трехфазным переключателем на три положения,
б – ответвления в середине обмотки ±2×2,5% с однофазными переключателями на пять положений (фаза А);
1 – неподвижный контакт, 2 – сегмент контактный;
3 – вал переключателя, 4 – контактные кольца

Устройство ПБВ позволяет регулировать напряжение в пределах ±5%, для чего трансформаторы небольшой мощности кроме основного вывода имеют два ответвления от обмотки высшего напряжения: +5% и -5% (рис.1,а). Если трансформатор работал на основном выводе 0 и необходимо повысить напряжение на вторичной стороне U2, то, отключив трансформатор, производят переключение на ответвление -5%, уменьшая тем самым число витков w1.

На трансформаторах средних и больших мощностей предусматриваются четыре ответвления ±2х2,5%, переключение которых производится специальными переключателями барабанного типа, установленными отдельно для каждой фазы (рис.1,б). Рукоятка привода переключателя выведена на крышку трансформатора.

При замыкании роликом переключателя контактов A4-A5 трансформатор имеет номинальный коэффициент трансформации. Положения А34 и А23 соответствуют увеличению коэффициента трансформации на 2,5 и 5%, а положения А56 и А67 – уменьшению на 2,5 и 5%.

Устройство ПБВ не позволяет регулировать напряжение в течение суток, так как это потребовало бы частого отключения трансформатора для производства переключений, что по условиям эксплуатации практически недопустимо. Обычно ПБВ используется только для сезонного регулирования напряжения.

Регулирование под нагрузкой (РПН) позволяет переключать ответвления обмотки трансформатора без разрыва цепи. Устройство РПН предусматривает регулирование напряжения в различных пределах в зависимости от мощности и напряжения трансформатора (от ±10 до ±16% ступенями приблизительно по 1,5%).

Рис.2. Устройство РПН трансформаторов
а – схема включения регулировочных ступеней,
Аb – основная обмотка, bс – ступень грубой регулировки,
de – ступени плавной регулировки, П – переключатель, И – избиратель,
б – переключающее устройство РНТ-13,
1 – переключатель, 2 – горизонтальный вал, 3 – кожух контакторов,
4 – вертикальный вал, 5 – коробка привода, 6 – бак трансформатора

Регулировочные ступени выполняются на стороне ВН, так как меньший по значению ток позволяет облегчить переключающее устройство. Для расширения диапазона регулирования без увеличения числа ответвлений применяют ступени грубой и тонкой регулировки (рис.2). Наибольший коэффициент трансформации получается, если переключатель П находится в положении II, а избиратель И – на ответвлении 6. Наименьший коэффициент трансформации будет при положении переключателя I, а избирателя – на ответвлении 1.

На рис.2,б показана схема расположения элементов переключающего устройства РНТ-13, применяемого на трансформаторах средней мощности.

Рис.3. Схема и последовательность переключений устройства РПН
с токоограничивающими сопротивлениями

Переход с одного ответвления регулировочной обмотки на другое осуществляется так, чтобы не разрывать ток нагрузки и не замыкать накоротко витки этой обмотки. Это достигается в специальных переключающих устройствах с реакторами или резисторами. Схема с резисторами (рис.3) обладает рядом преимуществ перед схемой с реакторами и получает все более широкое применение. На рис.3 показаны регулировочная часть обмотки de и переключающее устройство.

Последовательность работы контакторов и избирателей показана в таблице к рис.3. В исходном положении 0 трансформатор работает на ответвлении 5, ток нагрузки проходит через контакт К1. Допустим, что необходимо уменьшить число витков в регулировочной обмотке, т.е. перейти на ответвление 4. Последовательность работы элементов РПН в этом случае будет следующей: обесточенный избиратель И2 переводится в положение 4, затем отключается К1 и ток нагрузки кратковременно проходит по R1 и К2; при третьей операции замыкается КЗ, при этом половина тока нагрузки проходит по R1 и К2, а половина – по R2 и КЗ, кроме того, витки регулировочной обмотки 5 – 4 оказываются замкнутыми через R1 и R2 и по ним проходит ограниченный по значению циркулирующий ток; при следующих операциях (4 и 5) размыкается К2 и замыкается К4, при этом ток нагрузки проходит по регулировочной обмотке на ответвление 4, избиратель И2, контакты К4 к выводу 0.

В переключателях данного типа используются мощные пружины, обеспечивающие быстрое переключение контактов контактора (

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: