Трехфазный мостовой выпрямитель – принцип работы и схемы
Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.
Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:
В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.
Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:
Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:
Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.
В данном конкретном случае – шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.
Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.
Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.
Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.
Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).
Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.
Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:
Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.
В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.
Что такое трехфазное выпрямление, принцип работы и схемы
В данной статье поговорим про трехфазный выпрямитель (контролируемый и неконтролируемый). Подробно опишем его принцип работы, а так же рассмотрим схемы полуволнового и полноволнового трехфазного выпрямителя.
Описание
В предыдущей статье мы видели, что процесс преобразования входного источника переменного тока в постоянный источник постоянного тока называется выпрямлением, причем наиболее популярные схемы, используемые для выполнения этого процесса выпрямления, основаны на полупроводниковых диодах. На самом деле выпрямление переменного напряжения является одним из самых популярных применений диодов, так как диоды недорогие, небольшие и надежные, что позволяет нам создавать многочисленные типы выпрямительных цепей, используя либо индивидуально подключенные диоды, либо всего один встроенный мостовой выпрямительный модуль.
Однофазные источники питания, такие как в домах и офисах, обычно имеют фазо-нейтральное напряжение 120 или 240 Врм, также называемое линией нейтрали (LN), и номиналом постоянного напряжения и частоты, которые создают переменное напряжение или ток в форму синусоидальной формы волны с сокращением «AC».
Трехфазные выпрямители, также известные как многофазные выпрямительные схемы, аналогичны предыдущим однофазным выпрямителям. Разница на этот раз в том, что мы используем три однофазных источника питания, соединенных вместе, которые были произведены одним единственным трехфазным генератором.
Преимущество здесь состоит в том, что трехфазные выпрямительные схемы могут использоваться для питания многих промышленных устройств, таких как управление двигателем или зарядка аккумулятора, которые требуют более высоких требований к мощности, чем однофазная выпрямительная схема.
Трехфазные источники питания развивают эту идею на один шаг вперед, комбинируя вместе три напряжения переменного тока одинаковой частоты и амплитуды, причем каждое напряжение переменного тока называется «фазой». Эти три фазы имеют сдвиг по фазе на 120 электрических градусов друг от друга, создавая последовательность фаз или поворот фазы на 360 o ÷ 3 = 120 o, как показано.
Трехфазная форма волны
Преимущество здесь заключается в том, что трехфазный источник переменного тока (AC) может использоваться для подачи электроэнергии непосредственно на сбалансированные нагрузки и выпрямители. Поскольку трехфазный источник питания имеет фиксированное напряжение и частоту, он может использоваться в схеме выпрямления для получения энергии постоянного тока с постоянным напряжением, которая затем может быть отфильтрована, что приводит к выходному напряжению постоянного тока с меньшей пульсацией по сравнению с однофазной выпрямительной схемой.
Принцип работы
Видя, что 3-фазный источник питания — это просто три однофазные комбинации, мы можем использовать это многофазное свойство для создания 3-фазных цепей выпрямителя.
Как и в случае однофазного выпрямления, в трехфазном выпрямлении используются диоды, тиристоры, транзисторы или преобразователи для создания полуволновых, двухволновых, неконтролируемых и полностью управляемых выпрямительных цепей, преобразующих данный трехфазный источник питания в постоянный выходной уровень постоянного тока. В большинстве случаев трехфазный выпрямитель подается напрямую от электросети или от трехфазного трансформатора, если подключенная нагрузка требует другого уровня выхода постоянного тока.
Как и в случае предыдущего однофазного выпрямителя, наиболее простой трехфазной выпрямительной схемой является схема неуправляемого полуволнового выпрямителя, в которой используются три полупроводниковых диода, по одному диоду на фазу, как показано ниже.
Полуволновое трехфазное выпрямление
Так как же работает эта трехфазная полуволновая выпрямительная схема? Анод каждого диода подключен к одной фазе источника напряжения с катодами всех трех диодов, соединенных вместе в одну положительную точку, эффективно создавая схему диода типа «ИЛИ». Эта общая точка становится положительной (+) клеммой нагрузки, в то время как отрицательная (-) клемма нагрузки подключается к нейтрали (N) источника питания.
Предполагая, что чередование фаз красно-желто-синее (V A — V B — V C ) и красная фаза (V A ) начинается при 0 o . Первым проводящим диодом будет диод 1 ( D 1 ), так как он будет иметь более положительное напряжение на своем аноде, чем диоды D 2или D 3 . Таким образом, диод D 1 проводит для положительного полупериода V A, в то время как D 2 и D 3 находятся в их обратном смещенном состоянии. Нейтральный провод обеспечивает обратный путь тока нагрузки к источнику питания.
Через 120 электрических градусов диод 2 (D 2 ) начинает проводить для положительного полупериода V B (желтая фаза). Теперь его анод становится более положительным, чем диоды D 1 и D 3, которые оба «выключены», потому что они смещены в обратном направлении. Аналогичным образом , 120 о дальнейшем V С(синия фаза) начинает возрастать поворачивая «ON» диод 3 (D 3 ) в качестве анода становится более положительным, таким образом, превращая «OFF» диоды D 1 и D 2 .
Затем мы можем видеть, что для трехфазного выпрямления, какой бы диод не имел более положительного напряжения на своем аноде, по сравнению с двумя другими диодами, он автоматически начнет проводить, тем самым давая схему проводимости: D 1 D 2 D 3, как показано.
Из приведенных выше сигналов для резистивной нагрузки видно, что для полуволнового выпрямителя каждый диод пропускает ток в течение одной трети каждого цикла, а выходной сигнал в три раза больше входной частоты источника переменного тока. Следовательно, в данном цикле имеется три пика напряжения, поэтому за счет увеличения количества фаз от однофазного до трехфазного источника улучшается выпрямление источника питания, то есть выходное напряжение постоянного тока становится более плавным.
Для трехфазного полуволнового выпрямителя напряжения питания V A V B и V C сбалансированы, но с разностью фаз 120 o , что дает:
V A = V P * sin (ωt — 0 o )
V B = V P * sin (ωt — 120 o )
V C = V P * sin (ωt — 240 o )
Таким образом, среднее значение постоянного тока формы волны выходного напряжения от трехфазного полуволнового выпрямителя задается как:
Поскольку напряжение обеспечивает пиковое напряжение V P равно V RMS * 1,414, из этого следует, что V P равно V P / 1,414, что дает 0,707 * V P , поэтому среднее выходное напряжение постоянного тока выпрямителя можно выразить через среднеквадратичное фазное напряжение, дающее:
Полноволновое трехфазное выпрямление
В двухволновой трехфазной неконтролируемой мостовой выпрямительной схеме используются шесть диодов, по два на фазу аналогично однофазному мостовому выпрямителю. Трехфазный двухполупериодный выпрямитель получается с использованием двух схем полуволнового выпрямителя. Преимущество здесь состоит в том, что схема производит более низкий пульсационный выход, чем предыдущий полуволновой 3-фазный выпрямитель, поскольку его частота в шесть раз превышает входной сигнал переменного тока.
Кроме того, двухполупериодный выпрямитель может питаться от сбалансированного 3-фазного 3-проводного треугольника, подключенного треугольником, поскольку четвертый нейтральный (N) провод не требуется. Рассмотрим ниже трехполупериодную трехфазную схему выпрямителя.
Как и раньше, при условии чередования фаз красного-желтого-синего (V A — V B — V C) и красной фазы (V A ) начинается при 0 o . Каждая фаза подключается между парой диодов, как показано на рисунке. Один диод проводящей пары питает положительную (+) сторону нагрузки, в то время как другой диод питает отрицательную (-) сторону нагрузки.
Диоды D 1, D 3, D 2 и D 4 образуют мостовую выпрямительную сеть между фазами A и B, аналогично диоды D 3 D 5, D 4 и D 6 между фазами B и C и D 5, D 1, D 6 и D 2 между фазами C и А.
Таким образом, диоды D 1, D 3 и D 5 питают положительную шину и в зависимости от того, какая из них имеет более положительное напряжение на своем анодном выводе, проводит. Аналогично, диоды D 2, D 4 и D 6 питают отрицательную шину, и какой диод имеет более отрицательное напряжение на своих катодных выводах.
Тогда мы можем видеть, что для трехфазного выпрямления диоды проводят в совпадающих парах, давая схему проводимости для тока нагрузки: D 1-2 D 1-6 D 3-6 D 3-6 D 3-4 D 5- 4 D 5-2 и D 1-2, как показано.
В трехфазных силовых выпрямителях проводимость всегда происходит в наиболее положительном диоде и соответствующем наиболее отрицательном диоде. Таким образом, когда три фазы вращаются через выводы выпрямителя, проводимость передается от диода к диоду. Затем каждый диод проводит в течение 120 o (одну треть) в каждом цикле питания, но так как требуется два диода для проводки в парах, каждая пара диодов будет проводить только 60 o (одну шестую) цикла в любой момент времени, так как показано выше.
Поэтому мы можем правильно сказать, что для трехфазного выпрямителя, питаемого от «3» вторичных обмоток трансформатора, каждая фаза будет разделена на 360 o / 3, таким образом, требуя 2 * 3 диода. Отметим также, что в отличие от предыдущего полуволнового выпрямителя, между входной и выходной клеммами выпрямителя нет общего соединения. Следовательно, он может питаться от звезды или от трансформатора.
Таким образом, среднее значение постоянного тока сигнала выходного напряжения от трехфазного двухполупериодного выпрямителя задается как:
Где: V S равно (V L (PEAK) ÷ √ 3 ), а где V L (PEAK) — максимальное линейное напряжение (V L * 1,414).
Резюме трехфазного выпрямления
В этой статье мы увидели, что трехфазное выпрямление — это процесс преобразования трехфазного источника переменного тока в пульсирующее постоянное напряжение, когда выпрямление преобразует входной источник питания синусоидального напряжения и частоты в постоянное напряжение постоянного тока. Таким образом, выпрямление мощности превращает переменный источник в однонаправленный источник.
Но мы также видели, что 3-фазные неконтролируемые полуволновые выпрямители, которые используют один диод на фазу, требуют подключения в виде звезды в качестве четвертого нейтрального (N) провода для замыкания цепи от нагрузки к источнику. Трехфазный двухполупериодный мостовой выпрямитель, который использует два диода на фазу, требует только трех линий электропередачи, без нейтрали, такой как та, которая обеспечивается питанием от треугольника.
Другим преимуществом двухполупериодного мостового выпрямителя является то, что ток нагрузки хорошо сбалансирован по мосту, что повышает эффективность (отношение выходной мощности постоянного тока к подводимой входной мощности) и снижает содержание пульсаций, как по амплитуде, так и по частоте, по сравнению с полуволновой конфигурацией.
Увеличивая количество фаз и диодов в конфигурации моста, можно получить более высокое среднее выходное напряжение постоянного тока с меньшей амплитудой пульсаций, как, например, при 6-фазном выпрямлении каждый диод будет проводить только одну шестую цикла. Кроме того, многофазные выпрямители производят более высокую частоту пульсаций, что означает меньшую емкостную фильтрацию и намного более плавное выходное напряжение. Таким образом, 6, 12, 15 и даже 24-фазные неконтролируемые выпрямители могут быть разработаны для улучшения коэффициента пульсации для различных применений.
Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ
Трехфазная мостовая схема выпрямления. Схема и принцип действия.
Схема содержит трехфазный трансформатор, 6 диодов и активную нагрузку. Схема представляет собой сочетание двух трехфазных выпрямителей, включенных последовательно и питающихся от общих обмоток трансформатора напряжениями, сдвинутыми по фазе на 120 градусов.
Принцип работы: ток проводят в любой момент времени два последовательно соединенных диода, на аноде которого положительный наибольший потенциал и на катоде которого отрицательный наибольший потенциал.
Схема является двухполупериодной, так как ток через нагрузку протекает в течение обоих полупериодов питающего напряжения. Схема является двухтактной, так как токи во вторичных обмотках протекают в течение обоих полупериодов питающего напряжения. Токи вторичных обмоток имеют синусоидальную форму, поэтому отсутствует вынужденное намагничивание сердечника трансформатора.
2. Расчетные соотношения для трехфазной мостовой схемы выпрямителя
Действующее значение тока через вторичную обмотку:
I
Действующее значение фазного напряжения вторичной обмотки:
U
Действующее значение линейного напряжения вторичной обмотки:
U
Действующее значение тока первичной обмотки:
I
Обратное напряжение на диоде:
U
Типовая мощность трансформатора:
Р
I
Частота основной гармоники выпрямленного напряжения (тока):
f
Коэффициент пульсаций = 0,057.
Преимущества: меньше вес и размеры трансформатора, отсутствует вынужденное намагничивание, меньше пульсации напряжения, больше частота пульсаций
Основной недостаток: необходимость применения 6 диодов.
3. Влияние характера нагрузки на работу выпрямителя.
Работа выпрямителя на встречную ЭДС. При таком режиме параллельно зажимам выпрямителя включен источник постоянного ЭДС.
Особенности: уменьшаются пульсации выпрямленного напряжения; уменьшается время прохождения тока через диоды.
Применение: для зарядки аккумуляторной батареи.
Работа выпрямителя на нагрузку с емкостной реакцией. Параллельно нагрузке включается конденсатор. Этот режим имеет место при использовании конденсаторов в качестве первого элемента сглаживающего фильтра. По мере роста напряжения на зажимах вторичной обмотке трансформатора конденсатор заряжается, и напряжение на нем повышается. Так как напряжение на емкости отстает от напряжения фазы вторичной обмотки, то в течение режима всего времени заряда емкости напряжение на ней будет оставаться меньшим напряжения на обмотке и только в момент прекращения тока через диод эти напряжения окажутся равными.
Особенности режима: уменьшаются пульсации выпрямленного напряжения; сокращается время работы диодов; амплитудное значение тока через диоды и трансформатор увеличивается.
Недостатки режима: плохо используются обмотки трансформатора; величина выпрямленного напряжения зависит от тока нагрузки.
Работа выпрямителя на индуктивную нагрузку. Последовательно с нагрузкой включена индуктивность. Этот режим имеет место, когда в качестве первого элемента используется дроссель.
Наличие индуктивного элемента приводит к отставанию по времени изменение тока от изменения напряжения, что влияет на режим работы выпрямителя.
Особенности режима: длительность работы диода уменьшается; амплитудное значение тока уменьшается; среднее значение выпрямленного тока уменьшается.
Таким образом, в лекции изучены: принцип действия, достоинства и недостатки, основные расчетные соотношения трехфазной мостовой схемы выпрямления, а также влияние характера нагрузки на работу выпрямителя.
| | следующая лекция ==> | |
ЭТАПЫ ОПЕРАЦИИ СУБТОТАЛЬНОЙ СУБКАПСУЛЯРНОЙ РЕЗЕКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ | | | Общественно опасное деяние (действие или бездействие) и его уголовно-правовая характеристика. |
Дата добавления: 2015-12-01 ; просмотров: 3337 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
ТРЕХФАЗНАЯ МОСТОВАЯ СХЕМА ВЫПРЯМИТЕЛЯ
Трехфазная мостовая схема выпрямителя (схема Ларионова) (рисунок 11.7,а) содержит выпрямительный мост. Нижнюю группу диодов, которые соединены катодами, называют катодной группой, верхнюю группу диодов называют анодной группой. Нагрузка включается между анодами и катодами диодов.
Рисунок 11.7 – Схема трехфазного мостового выпрямителя (а); временная диаграмма работы выпрямителя ( б)
Эту схему можно рассматривать как последовательное включение двух схем трехфазных выпрямителей с нулевой точкой. Одна из этих схем представлена анодной группой диодов (VD4,VD6,VD2), а вторая – катодной группой диодов (VD1,VD3, VD5). Нумерация диодов в данной схеме носит не случайный характер, а соответствует порядку включения их в работу. Ток нагрузки создается под действием линейного напряжения, он протекает через один из диодов катодной группы и один из диодов анодной группы (рисунок 11.7,b).
В катодной группе в открытом состоянии будет находиться тот из диодов, фазное напряжение которого имеет наибольшую величину; в анодной группе диодов в открытом состоянии будет находиться тот из диодов, фазное напряжение которого имеет наименьшую величину (с учетом знака). Следовательно, будет проводить та пара диодов, к которой в этот момент приложено наибольшее линейное напряжение. На участке 1-2 временной диаграммы наибольшее положительное напряжение имеет , подаваемое к аноду диода, а наименьшее значение напряжения имеет , следовательно, ток в этом промежутке протекает через диоды VD1 и VD6. Аналогично можно проследить моменты включения и выключения диодов. Интервал проводимости каждого из диодов , а совместно пара диодов открыты на интервале . За период происходит шесть переключений, поэтому эту схему называют «шестипульсной».
Среднее значение выпрямленного напряжения
, (11.15)
где – действующее значение фазного напряжения во вторичной обмотке трансформатора.
При заданном напряжении можно найти необходимое напряжение
. (11.16)
Коэффициент пульсации по первой гармонике составляет
, (11.17)
в этом выражении 6, т.к. в период колебаний напряжения сети укладывается шесть пульсов. Первая гармоника пульсации имеет частоту шестикратную частоте сети.
Обратное напряжение найдено как разность потенциалов анода и катода.
При выборе диода следует учитывать, что максимальное обратное напряжение равно амплитуде линейного вторичного напряжения
. (11.18)
Средний ток диодов связан со средним значением тока нагрузки
, . (11.19)
Трехфазная мостовая схема выпрямителя имеет лучшие показатели, чем трехфазная схема с нулевой точкой.
- Действующее значение фазного напряжения на вторичной обмотке трансформатора в два раза меньше, чем в схеме с нулевой точкой, при одинаковых .
- Коэффициент пульсации по первой гармонике значительно меньше, чем в схеме с нулевой точкой.
- Частота первой гармонической составляющей в два раза больше, чем в схеме с нулевой точкой. Это упрощает задачу сглаживания выпрямленного напряжения.
- При реализации схемы требуются диоды с меньшим обратным допустимым напряжением.
- Среднее значение тока через вторичную обмотку трансформатора равно нулю, т.к. токи, протекающие через диоды анодной и катодной групп, противоположно направлены. Это исключает крайне нежелательный эффект подмагничивания сердечника трансформатора.
СГЛАЖИВАЮЩИЕ ФИЛЬТРЫ
Значительные пульсации выпрямленного напряжения не позволяют его использовать для непосредственного питания электронной аппаратуры. Для уменьшения коэффициента пульсации используют сглаживающие фильтры. В зависимости от элементов, которые входят в их состав, фильтры подразделяют на простые фильтры С, L, Г-образные RC, LC и комбинированные CRC, CLC. Наличие сглаживающего фильтра оказывает существенное влияние на работу выпрямителя, нагрузкой которого он является. Нагрузка может носить резистивно-емкостный или резистивно-индуктивный характер.
Емкостный фильтр
Для снижения пульсаций выпрямленного напряжения параллельно нагрузке подключают конденсатор. На рисунке 11.8 приведена схема однофазного выпрямителя со средней точкой, на рисунке 11.9 – соответствующие ей кривые токов и напряжений.
Рисунок 11.1 – Схема однофазного выпрямителя со средней точкой
и емкостным фильтром
Действие емкостного фильтра основано на том, что конденсатор в течение проводящего интервала запасает энергию, а затем отдает ее в нагрузку, поддерживая выходное напряжение на уровне, близким к постоянному.
В точке 1 (временной диаграммы) диод VD1 открывается, и конденсатор заряжается через малое сопротивление открытого диода практически по синусоиде. В точке 2 диод закрывается, т.к. напряжение на катоде его больше напряжения на аноде и анодный ток прекращается. На интервале (2-4) конденсатор разряжается через нагрузку по закону
, где .
Рисунок 11.9 – Временные диаграммы работы выпрямителя с емкостным фильтром
В точке 3 напряжение на аноде диода > , диод VD2 открывается и возникает ток , конденсатор вновь начинает заряжаться. Напряжение на нагрузке принимает пилообразную форму. Ток через диоды протекает в течение части положительного полупериода в интервале 2Ө , где Ө – угол отсечки. При увеличении постоянной времени фильтра разряд конденсатора будет проходить с меньшей скоростью, а напряжение будет приближаться к постоянному напряжению.
Для расчета емкости фильтра при заданном коэффициенте пульсации заменим истинную форму напряжения на пилообразную, как показано на рисунке 11.10.
Рисунок 11.10 – К определению коэффициента пульсации выпрямленного напряжения
После явных преобразований
, если , то ;
при , , ,
найдем коэффициент пульсации
, (11.21)
где – период и частота первой гармонической составляющей выпрямленного напряжения.
Расчет конденсатора из данной формулы дает завышенное значение примерно на 5%, это вполне допустимо, т.к. технологический разброс при изготовлении конденсаторов достигает 20%.
ИНДУКТИВНЫЙ ФИЛЬТР
Для уменьшения пульсаций тока и напряжения последовательно с нагрузкой подключают катушку индуктивности (дроссель). В этом случае нагрузка выпрямителя носит резистивно-индуктивный характер. Аналогичный характер нагрузки получим, используя выпрямитель для питания машины постоянного тока. Схема однофазного выпрямителя со средней точкой с резистивно-индуктивной нагрузкой и временная диаграмма его работы показаны на рисунках 11.11 и 11.12.
Рисунок 11.11 – Схема однофазного выпрямителя со средней точкой с резистивно-индуктивной нагрузкой
Рисунок 11.12 – Временная диаграмма работы выпрямителя
На интервалах времени (0-1) и (1-2) поочередно открываются соответствующие диоды VD1 и VD2. Напряжение формируется как сумма положительных полуволн напряжений и . Из-за влияния индуктивности дросселя ток в цепи получается сглаженным. Под действием индуктивности ток не спадает до нуля при нулевых значениях напряжения . Дроссель в момент нарастания тока запасает энергию, а за тем отдает ее в нагрузку, поддерживая ток на неизменном уровне. Если индуктивность настолько велика, что ток остается постоянным, а анодные токи , диодов имеют форму прямоугольных импульсов. Ток , потребляемый из сети, имеет форму разнополярных прямоугольных импульсов.
Напряжение на нагрузке повторяет форму тока, а среднее значение напряжения на нагрузке , т.к. постоянная составляющая напряжения практически без потерь передается через дроссель, который имеет малое активное сопротивление.
Среднее значение тока в нагрузке , а среднее значение тока через диод
Индуктивность как самостоятельный фильтр в источниках питания используется редко, чаще в составе сложных фильтров.
Дата добавления: 2016-10-30 ; просмотров: 4551 | Нарушение авторских прав
Мостовой трехфазный выпрямитель: схема выпрямления
Первичное применение выпрямителей состоит в выводе источника постоянного тока (DC) из источника переменного тока (AC). Практически все электронные устройства требуют постоянного тока, поэтому выпрямитель трехфазный используются внутри блоков питания очень широкого спектра электронного оборудования.
Цепь полного цикла
Она представляет собой схему выпрямителя, которая преобразует напряжение AC в постоянное напряжение. Эти схемы называются полноволновым выпрямителем, поскольку он генерирует выходной сигнал полного цикла.
Преимущества трехфазных выпрямителей:
- Из-за их низкой стоимости по сравнению с центральным нажатием они широко используются в цепи питания.
- Это можно использовать для обнаружения амплитуды модулированного радиосигнала.
- Мостовые выпрямители могут использоваться для подачи поляризованного напряжения при сварке.
Трехфазная схема выпрямителя
Большинство промышленных источников питания для электродвигателей и сварочных применений используют трехфазное напряжение AC. Это означает, что устройство для этих цепей должен использовать трехфазный мост, который имеет шесть диодов для обеспечения полноволнового выпрямления (два диода для каждой линии трёх фаз). На этом рисунке показана электрическая трехфазная мостовая схема выпрямления.
На диаграмме вторичная обмотка трехфазного трансформатора на диоде устройства. 1D, 3D и 5D соединены вместе, чтобы обеспечить общую точку для отрицательного вывода DC выходной мощности. 2D, 4D и 6D соединены, чтобы обеспечить общую точку для постоянного положительного вывода выходной мощности.
Электронная схема трехфазного мостового выпрямителя, где он соединён со вторичной обмоткой трехфазного трансформатора. Трехфазные входные синусоидальные волны (б). Шесть полуволн для выхода DC. Хорошим правилом для определения соединений на диодных устройствах является то, что входное напряжение (U) переменного тока будет подключено к мосту, где соединяются анод и катод любых двух диодов.
Так как это происходит в двух точках моста, входное U не имеет определённую полярность. Положительный вывод для источника питания будет подключён к мосту, где два катода диодов соединены, а отрицательный вывод будет соединён с мостом и соединяются два анода диодов.
Поскольку шесть полуволн перекрываются, напряжение DC не имеет шансов добраться до нулевой точки напряжения, таким образом, среднее выходное напряжение DC очень велико.
Трехфазный полноволновый мостовой выпрямитель используется там, где требуемое количество мощности DC велико, а эффективность трансформатора должна быть высокой. Поскольку выходные сигналы полуволн перекрываются, они обеспечивают низкий процент пульсаций.
В этой схеме выходная пульсация в шесть раз превышает входную частоту. Поскольку процент пульсаций низкий, выходное U (DC) можно использовать без большой фильтрации. Этот тип устройства совместим с трансформаторами, которые соединены звездой или треугольником.
Мостовой тип устройства
Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением.
Полноволновой трехфазный выпрямитель похож на мост Гейца.
Схема полноволнового трехфазного устройства. Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В).
Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.
Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы. Диод ведёт себя как тиристор, загружаемый без задержки. Выпрямленное напряжение имеет такой вид.
Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:
U31 = -U13U23 = -U32U21 = -U12.
Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3).
Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В.
Свойства трехфазного напряжения
Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.
Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.
Среднее значение трехфазного выпрямленного напряжения: avg = 1,654Vmax = 1,654 x (1,414×230) = 538 В.
Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов.
Таким образом, можно суммировать следующие моменты:
- 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
- среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
- нейтраль не используется трехфазным выпрямителем.
Однофазное полноволновое устройство
На рисунке показаны однофазный полноводной управляемый выпрямитель с нагрузкой R.
Однофазный полностью управляемый выпрямитель позволяет преобразовывать однофазный AC в DC. Обычно это используется в различных приложениях, таких как зарядка аккумулятора, управление скоростью двигателей постоянного тока и передняя часть ИБП (источник бесперебойного питания) и SMPS (источник питания с переключаемым режимом).
Все четыре используемых устройства — тиристоры. Моменты включения этих устройств зависят от пусковых сигналов. Выключение происходит, когда ток через устройство достигает нуля, и он обратный смещён, по крайней мере, на длительность, равную времени выключения устройства, указанного в листе данных:
- В положительных полуциклических тиристорах T1 и T2 стреляют под углом α.
- Когда T1 & T2 проводит Vo = Vs IO = is = Vo / R = Vs / R.
- В отрицательном полупериоде входного напряжения SC3 T3 и T4 запускаются под углом (π + α).
- Здесь выходной ток и ток питания находятся в противоположном направлении. T3 & T4 отключается при 2π.
Работа диодного моста
Он состоит из четырёх диодов, и эта конфигурация подключается через нагрузку.
Во время положительного полупериода входных сигналов диодов D1 и D2 в прямом направлении смещены, а D3 и D4 обращены назад. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводиться — ток начинает протекать через него, как показано на рисунке ниже на красной линии.
Во время отрицательного полупериода входного сигнала AC диоды D3 и D4 смещены вперёд, а D1 и D2 обращены в обратном направлении. Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.
В обоих случаях направление тока нагрузки одинаковое, как показано на рисунке одностороннее, что означает DC. Таким образом, при использовании мостового выпрямителя входной ток AC преобразуется в DC. Выход на нагрузке с помощью этого мостового выпрямителя имеет пульсирующий характер, но для получения чистого DC требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для различных мостовых выпрямителей, но в случае управляемых выпрямителей запускается тиристор, чтобы управлять током для нагрузки.
Режим 1 (от α до π). В положительном полупериоде подаваемого переменного сигнала SC1 T1 и T2 являются прямым смещением и могут быть включены под углом α. Напряжение нагрузки равно положительному мгновенному напряжению питания AC.
Режим 2 (π toπ + α). При wt = π входное питание равно нулю, а после π оно становится отрицательным. Но индуктивность противодействует любым изменениям для поддержания DC нагрузки и в том же направлении.
Из-за этого индуцированного напряжения SC1 T1 и T2 являются передовыми, несмотря на отрицательное напряжение питания. Таким образом, нагрузка действует как источник и запасённая энергия в индуктивности, возвращается обратно в источник AC.
Режим 3 (π + α до 2π). При wt = π + α SCR T3 и T4 включаются и T1, T2 — обратное смещение. Таким образом, процесс проводимости переносится из T1, T2 в T3, T4. При положительном напряжении нагрузки и потреблении энергии тока сохраняется.
Режим 4 (от 2π до 2π + α). При wt = 2π входное напряжение проходит через ноль.
Сравнение однофазного и трехфазных устройств
Однофазный выпрямитель, как правило, менее дорогостоящий, чем трехфазный с одинаковой номинальной мощностью, но это преимущество в затратах становится менее значительным при более высоких нагрузках. Более крупные выпрямители используются в больших системах ИБП, гальванических, электроочистительных и анодирующих установках, больших контроллерах двигателя постоянного тока и т. д.
Любое устройство мощностью более 10 кВт должно иметь трехфазный вход. Кроме того, контроллеры переменного тока с регулируемой частотой, которые напрямую ректифицируют сеть без трансформатора, имеют трехфазный выпрямитель, хотя однофазный вход возможен для двигателей менее 5 кВт.
Ниже приведён список преимуществ трехфазного и однофазного выпрямителей с одинаковой выходной мощностью:
- Входной ток сети ниже и сбалансирован между тремя фазами. Этот баланс важен, если выпрямительная нагрузка является значительной частью общей нагрузки вашего завода.
- Входные гармонические токи меньше и легче подавляются.
- Величина пульсации выхода намного меньше, а частота в 3 раза больше, чем у однофазного выпрямителя. Это значительно облегчает сглаживание с меньшими дросселями и / или конденсаторами.
Средний ток каждого составляет около 67% от значения для однофазного выпрямителя. Поэтому могут использоваться более мелкие устройства и их легче распределять вокруг радиаторов. Для небольших устройств эти преимущества не столь важны. Но для больших выпрямителей (более 10 кВт) они становятся более значительными.
Теоретические сведения о трехфазном мостовом управляемом выпрямителе
Дата добавления: 2015-07-04 ; просмотров: 8941 ; Нарушение авторских прав
Цель работы
Углубить знания по физической сущности процессов преобразования переменного тока в постоянный, приобрести навыки экспериментального исследования устройств промышленной электроники с помощью осциллографа.
Теоретические сведения о трехфазном мостовом управляемом выпрямителе
Трехфазная мостовая схема получила преимущественное применение при построении управляемых выпрямителей трехфазного тока (рисунок 1.1).
Рисунок 1.1 – Схема трехфазного мостового управляемого выпрямителя
Основными характеристиками, определяющими эксплуатационные свойства выпрямителей, являются:
– средние значения выпрямленного напряжения и тока Ud, Id ;
– коэффициент полезного действия η;
– коэффициент мощности χ;
– внешняя характеристика – зависимость среднего напряжения на выходе от среднего тока нагрузки: ;
– регулировочная характеристика – зависимость среднего выпрямленного напряжения от угла управления ;
– коэффициент пульсаций – отношение амплитуды данной гармонической составляющей выпрямленного напряжения (тока) к среднему значению выпрямленного напряжения (тока): .
Рассмотрим свойства и принцип работы выпрямителей построенных по трехфазной мостовой схеме (схеме Ларионова).
Вентили на схеме выпрямителя (рисунок 1.1) разбиты на две группы: катодная группа, у которой соединены катоды(VS1, VS3, VS5);анодная группа, у которой соединены аноды (VS2, VS4, VS6). Общие точки вентилей двух групп соединены с источником питания (в данной схеме с вторичными обмотками трансформатора). Нумерация тиристоров выбрана для упрощения понимания принципов работы управляемого выпрямителя.
В неуправляемых выпрямителях или при нулевом угле управления α в управляемых выпрямителях в каждый момент времени ток будет проводить тот вентиль, потенциал анода которого будет максимальным (в катодной группе) или потенциал катода которого будет минимальным (в анодной группе). Поэтому мгновенное значение напряжения на выходе выпрямителя определяется значением линейного напряжения фаз, подключенных к нагрузке в данный момент времени через открытые вентили. На временной диаграмме рисунок 1.2а показана очередность проводящего состояния тиристоров.
В управляемых выпрямителях средние значения токов и напряжений зависят от угла управления α, отсчитываемого от точек естественной коммутации тиристоров θ1, θ2, θ3 и т.д. до момента открытия тиристоров (рисунок 1.2а). Это обуславливается задержкой на угол управления моментов подачи отпирающих импульсов на тиристоры (рисунок 1.2б) системой управления выпрямителя.
При наличии достаточно большой индуктивности в цепи нагрузки задержка вступления в работу очередных тиристоров создает задержку на такой же угол α моментов запирания проводящих тиристоров. При этом кривые потенциалов φd(+), φd(–) и напряжения ud приобретают вид, показанный на рисунке 1.2а, в. В кривой выпрямленного напряжения создаются «вырезки»,
Рисунок 1.2 – Временные диаграммы работы трехфазного преобразователя
вследствие чего среднее значение напряжения Ud уменьшается. Таким образом, при изменении угла α осуществляется регулирование величины выпрямленного напряжения Ud. Влияние угла α на кривую ud и среднее значение напряжения Ud показаны на рисунке 1.3а – г. Поскольку в трехфазной мостовой схеме выпрямлению подвергается линейное напряжение, кривая ud на рисунке 1.3 а-г, как и на рисунке 1.2в, состоит из участков линейных напряжений вторичных обмоток трансформатора uab, uac, ubc uba, uca, ucb.
При изменении угла α в диапазоне от 0 до 60° переход напряжения ud с одного линейного напряжения на другое осуществляется в пределах положительной полярности участков линейных напряжений (рисунок 1.3а, б). Поэтому форма кривой напряжения ud и его среднее значение одинаковы, как при активной, так и при активно-индуктивной нагрузках.
При α > 60° вид кривой ud зависит от характера нагрузки (рисунок 1.3в, г). В случае активно-индуктивной нагрузки ток id продолжает протекать через тиристоры и вторичные обмотки трансформатора после изменения полярности их линейного напряжения (рисунок 1.3в, г), в связи, с чем в кривой ud появляются участки линейных напряжений отрицательной полярности. При эти участки продолжаются до моментов очередного отпирания тиристоров. Равенству площадей участков и условию Ud = 0 соответствует угол α = 90° (рисунок 1.3г). Значение этого угла характеризует нижний предел регулирования напряжения Ud при . При активной нагрузке участки напряжения отрицательной полярности отсутствуют и в кривой Ud при α > 60° появляются нулевые паузы. Напряжение Ud станет равным нулю при значении угла α = 120°.
Зависимость среднего значения выпрямленного напряжения от угла управления α (регулировочная характеристика) при может быть найдена усреднением кривой ud на интервале (рисунок 1.2в):
Рисунок 1.3 – Кривые выходного напряжения трехфазного мостового управляемого выпрямителя при и различных углах управления
, (1.1)
где U2 – действующее значение фазного напряжения вторичных обмоток трансформатора;
– среднее значение выпрямленного напряжения трехфазного выпрямителя при α = 0, т.е. значение выходного напряжения неуправляемого выпрямителя.
Участок регулировочной характеристики при активной нагрузке на интервале 60° 120° находят из выражения
. (1.2)
Регулировочные характеристики трехфазного мостового выпрямителя, построенные по выражениям (1.1), (1.2), приведены на рисунке 1.4.
Рисунок 1.4 – Регулировочные характеристики трехфазного мостового управляемого выпрямителя
Кривые анодных токов тиристоров и токов обмоток трансформатора при (см. рисунок 1.2 г, д) отличаются от кривых соответствующих токов при нулевом угле управления, наличием отстающего фазового сдвига относительно напряжений ( ).
Кривая напряжения на тиристоре приведена на рисунке 1.2е. Амплитуда обратного напряжения равна 1,045Ud0. Этой величиной определяется не только обратное напряжение, но и возможное значение амплитуды прямого напряжения на тиристоре при регулировании угла α.
На рисунке 1.5а-д приведены временные диаграммы напряжений и токов управляемого выпрямителя с учетом коммутационных процессов, вызываемых индуктивностями рассеивания обмоток трансформатора (на рисунке 1.1 не приведены). Коммутационные процессы обусловлены переходом тока с тиристора, заканчивающего работу, на тиристор, вступающий в работу (рисунок 1.5в) той же тиристорной группы (анодной или катодной). Каждый такой коммутационный процесс начинается в момент подачи отпирающего импульса на очередной в порядке вступления в работу тиристор (рисунок 1.5а). Коммутация токов продолжается в течение интервала γ и протекает так же, как и при нулевом угле управления (или в схеме неуправляемого мостового выпрямителя).
Потенциалы выводов нагрузки на этапах коммутации за счет падений напряжения на реактивных сопротивлениях уменьшаются. На интервале γ они определяются полусуммой напряжений двух фаз с коммутирующими вентилями. Коммутационные падения напряжения сказываются на форме кривой напряжения ud и уменьшении его среднего значения Ud (рисунок 1.5б) на величину . В этом случае среднее значение напряжения .
Расчет среднего значения коммутационных падений напряжения производят с учетом, что напряжение (рисунок 1.5а) к моменту начала коммутаций имеет нулевую фазу:
Рисунок 1.5 – Временные диаграммы с учетом явления коммутации
(1.3)
Из анализа цепей можно получить соотношение для длительности коммутационного процесса g через параметры коммутационной цепи
(1.4)
где xa – суммарное индуктивное сопротивление индуктивностей рассеивания трансформатора.
Подстановкой (1.4) в (1.3) находим и среднее значение напряжения на нагрузке с учетом явления коммутации:
(1.5)
Соотношение (1.5) является уравнением внешних характеристик трехфазного управляемого выпрямителя. Вид внешних характеристик соответствует рисунку 1.6.
Влияние коммутационных процессов на форму кривых первичного и вторичного токов трансформатора, а также на форму кривой напряжения на тиристоре показано на рисунке 1.5г, д. Первые гармоники токов приобретают результирующий фазовый сдвиг, равный . Процессы коммутации не сказываются на величинах максимально возможных прямого и обратного напряжений на тиристоре, которые остаются равными 1,045 .
Рисунок 1.6 – Внешние характеристики управляемого выпрямителя