Описание и технические характеристики люминесцентных ламп

Анализируем технические характеристики разных видов люминесцентных ламп

В настоящее время не будет ошибкой сказать, что люминесцентные лампы представляют собой наиболее распространенный вид среди всех ламп, используемых в освещении. Еще в 1970-ые гг. они сменили лампы накаливания в производственных помещениях и различных общественных учреждениях. Являясь энергоэффетивными, они давали возможность качественно осветить большие площади: коридоры, фойе, классы, палаты, цеха, офисы.

Дальнейшее совершенствование технологии производства люминесцентных ламп сделало возможным уменьшение их размера, увеличение яркости и качества излучаемого света. Начиная с 2000-х гг. эти лампы начинают активно проникать в домашние хозяйства и использоваться там, где ранее светили «лампочки Ильича». Люминесцентные лампы отличаются привлекательной ценой, позволяют экономить электроэнергию, предоставляют возможность выбора цветовой температуры света.

Типы выпускаемых люминесцентных ламп

Существует терминологическая путаница, в результате которой энергосберегающие лампы были выделены в отдельных класс ламп. При этом в России под энергосберегающими лампами понимаются компактные люминесцентные лампы для домашнего использования.

Для многих является открытием, что лампы спиральной формы, которые мы используем дома, по своему принципу работы являются теми же самыми люминесцентными лампами, которыми оборудованы все общественные учреждения. Если же говорить о сбережении энергии, то все такие осветительные приборы относятся к классам энергоэффективности А или В.

Представляется оптимальным классифицировать люминесцентные лампы в соответствии с различными основаниями. В рамках наиболее общей типологии, основанной на технологии производства и сферах использования, можно выделить три вида:

  1. Стандартные лампы с одним, тремя и пятью слоями люминофора (диаметр 26 мм).
  2. Компактные лампы с трубкой различной формы с несколькими слоями люминофора.
  3. Специальные лампы для использования в соответствии с узкоспециализированными целями.

Помимо этого, типы люминесцентных ламп определяются на основании следующих признаков:

  • Мощность потребляемой энергии (W). В отличии от этого же показателя ламп накаливания технические характеристики люминесцентных ламп указывают не на силу излучаемого света, а на энергоэффективность.
  • Излучаемый световой поток (Лм).

710 Лм соответствует лампе накаливания мощностью 60 W, 1340 Лм – 100 W, 3040 Лм – 200 W.

Цветовая температура света (К).

От красного (2000 К) до бело-голубого (7000 К).

Индекс цветопередачи (Ra).

Определяется по 100-балльной шкале. Чем ни выше значение, тем «правильнее» цвет освещаемых лампой вещей.

Но главным недостатком такого устройства является его цена. Поэтому многие все так же предпочитают пользоваться электромагнитным дросселем, о характеристиках которого можно прочитать в отдельной статье.

Одиночное, последовательное или парное.

Размещение пускорегулирующего аппарата.

Может быть размещен в самой лампе (компактная лампа) или в светильнике (стандартная лампа).

Основу всех люминесцентных ламп составляют пары ртути в небольшой концентрации, которые при пропускании через них электричества, излучают ультрафиолетовый свет. Люминофор – химический состав, содержащийся на поверхности трубки внутри, преобразует ультрафиолет в видимую часть спектра.
Характеристики излучаемого лампой света зависят от состава и качества люминофора.

Параметры стандартных видов источников света

Используются для общего освещения и обладают следующими характеристиками.

  1. Мощность: 18-58 W.
  2. Световой поток:
    • 1000-4000 Лм (однослойный люминофор),
    • 1300-5200 Лм (трехслойный люминофор),
    • 1000-3600 Лм (пятислойный люминофор).
  3. Индекс цветопередачи:
    • 50-76 (однослойный люминофор),
    • 85 (трехслойный люминофор),
    • 93-98 (пятислойный люминофор).
  4. Цветовая температура:
    • 3000-7000 К (однослойный люминофор),
    • 2700-7000 К (трехслойный люминофор),
    • 3000-5400 К (пятислойный люминофор).
  5. Цоколь: G13.
  6. Длина: 590-1500 мм.

Технические особенности КЛЛ

Данный вид ламп подразделяется на три категории:

  1. С трубкой П-образной или Н-образной формы, стартером внутри и внешней пускорегулирующей аппаратурой. (1)
  2. С изогнутой трубкой, встроенными стартером и пускорегулирующей микросхемой. (2)
  3. С трубкой в форме кольца, встроенными стартером и пускорегулирующей аппаратурой. (3)

Указанные виды компактных ламп обладают следующими особенностями:

  1. Напряжение: 5-35 W.
  2. Световой поток:
    • 400-900 Лм (1),
    • 425-1200 Лм (2),
    • 700-1450 Лм (2).
  3. Индекс цветопередачи: 60-98 Ra.

Домашнему мастеру не обязательно идти в магазин за приобретениями всех нужных для работ инструментов, многие из них собираются своими руками. Как, например, штроборез — из болгарки. Или сварочный инвертор, при изготовлении которого может понадобится много ранее ненужных деталей.

Характеристики люминесцентных ламп специального назначения

Лампы спецназначения устанавливаются в общественных местах с целью дополнительного выделения тех или иных особенностей интерьера, акцентированной подсветки в определенном спектре для более точной передачи цвета и оттенков предметов. Сферы, в которых они применяются:

  • в развлекательной клубной индустрии.
  • в медицинских учреждениях в качестве ультрафиолетовых бактерицидных ламп.
  • для подсветки витрин в магазинах, экспонатов на выставках и т.п.

Выделяют следующие параметры люминесцентных ламп со специфичными целями использования:

  1. Мощность: 18-58 В
  2. Световой поток: 550-3700 Лм
  3. Вариативность:
    • с цветным люминофором;
    • синие рефлекторные;
    • ультрафиолетовые.
  4. Цветовая температура: 3000-7000 К.
  5. Цоколь: G13.
  6. Длина: 600-1500 мм.

Таким образом, люминесцентные лампы излучают мощный световой поток, обеспечивают адекватную передачу цвета освещаемых предметов, позволяют выбирать наиболее подходящий по цветовой температуре свет, обладают адекватной стоимостью и долгим сроком службы.

При всей своей привлекательности люминесцентные лампы имеют большой минус: пары ртути внутри трубки лампы. Это создает опасность в случае ее повреждения, а также предполагает специальные меры утилизации, что делает ее использование не совсем удобным.

Несмотря на массовый характер распространения люминесцентных ламп, следует признать, что они, скорее, уже относятся к прошлому и так же, как лампы накаливания, уступят место более совершенной технологии. Которая абсолютно безопасна, не требует специальных мер утилизации, отличается длительным жизненным циклом и, кроме того, является более энергоэффективной. Название этой технологии – диодные лампы для дома.

Познавательный ролик о создании современной люминесцентной лампы

Размеры люминесцентных ламп

Среди различных газоразрядных источников освещения, лампы дневного света низкого давления занимают ведущее место, благодаря своей широкой популярности. Они отличаются качественным спектральным составом, высокой световой отдачей и большими сроками эксплуатации. Чаще всего используются линейные люминесцентные лампы, размеры которых дают возможность применять их во многих областях.

Высокие показатели световой отдачи выдает дуговой разряд в ртутных парах, сочетаясь с ультрафиолетовым излучением, преобразующимся в слое люминофора. В результате, по сравнению с обычной лампочкой, получается более ровный и устойчивый свет, максимально приближенный к естественному освещению.

Конструкция люминесцентной лампы

Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления, где электрический разряд образуется в газовой среде, смешанной с ртутными парами.

Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.

Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.

Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.

Таким образом, свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.

Размеры и эффективность

Для того чтобы получить максимальный эффект от электрического разряда, во внутреннем пространстве колбы должна поддерживаться определенная температура. В этом случае ультрафиолетовое излучение ртутных паров будет наибольшим. Данный параметр напрямую связан с диаметром колбы. Дело в том, что плотность тока во всех лампах должна быть примерно одинаковой. Этот показатель определяется путем деления величины тока на площадь сечения стеклянного цилиндра.

В связи с этим, лампы с колбами одинакового диаметра, но с различной мощностью, способны работать при одном и том же номинальном токе. Между падением напряжения и длиной цилиндра существует прямая пропорциональная зависимость, определяющая класс энергоэффективности. То есть, чем длинее лампа, тем выше ее мощность, что наглядно отражено на рисунке. При диаметре Т5 и 13 т длина составит 52 см, 21 ватт – 85 см, 28 ватт – 115 см. Диаметр Т8 и мощность 15 ватт соответствуют длине 44 см.

Большие размеры люминесцентных ламп изначально делали их не совсем удобными в использовании, поскольку им требовались и светильники с аналогичными габаритами. Производители всегда хотели уменьшить это соотношение, используя различные способы. Однако нельзя было просто снизить длину колбы и увеличить ток разряда, чтобы достичь установленной мощности. Это привело бы к возрастанию температуры внутри колбы и увеличению давления ртутных паров. При таких параметрах световая отдача ламп заметно снижается.

Инженерная мысль пошла другим путем, и размеры изделий были снижены путем изменения их конфигурации. Длинные цилиндры сгибались пополам или соединялись в кольцо, что позволило получить источники света U-образной и кольцевой формы с уменьшенными габаритами без потерь мощности. Одновременно удалось повысить коэффициент мощности и снизить коэффициент пульсации.

Окончательно проблема разрешилась лишь с появлением люминофоров, устойчивых к высоким электрическим нагрузкам. В результате, диаметр колб значительно снизился и достиг 12 мм. Общая длина ламп еще больше сократилась за счет многократных изгибов тонких стеклянных цилиндров. Появились компактные изделия, с таким же внутренним устройством и принципом работы, как у обычных ламп линейного типа.

Виды ламп дневного света

Все стандартные люминесцентные лампы разделяются на два основных типа – высокого и низкого давления, определивших различия и особенности конструкции каждого из них. Описание каждой из них приложено в инструкции по эксплуатации.

Первый вариант представлен лампами ДРЛ, получившими широкое распространение в уличных светильниках. Они отличаются высокой мощностью и низкой цветопередачей, поэтому и применяются на больших площадях, где не требуется высокое качество света. Существуют изделия с повышенной светоотдачей и различной цветовой гаммой. Они используются в качестве мощных точечных источников света и декоративной подсветки, выделяющей архитектурные элементы зданий.

Более всего оказалась востребована люминесцентная лампа низкого давления, которая используется повсеместно – в быту и на производстве. Преимущественно, это изделия цилиндрической формы, успешно заменяющие традиционные лампы накаливания. В настоящее время рынок электроники все больше заполняется компактными люминесцентными лампами. Независимо от конструкции, все они работают вместе со пускорегулирующей аппаратурой электромагнитного или электронного типа, снижающей коэффициент пульсации. Последний вариант представляет собой миниатюрную электронную схему, способную разместиться в цоколе лампы.

Пускорегулирующая аппаратура

Любые типы газоразрядных ламп не могут быть напрямую подключены к электрической сети. Находясь в холодном состоянии, они обладают высоким уровнем сопротивления и для создания разряда им требуется импульс высокого напряжения. После того как появляется разряд в осветительном устройстве возникает сопротивление с отрицательным значением. Для его компенсации нельзя обойтись простым включением сопротивления в цепи. Это приведет к короткому замыканию и выходу из строя источника освещения.

Принцип работы и схемы балласта для люминесцентных ламп

Что это такое

Люминесцентная лампа – это газоразрядный источник света низкого давления (от 0,1 до 25 кПа). Разряд в парах ртути и инертного газа вызывает ультрафиолетовое свечение, которое люминесцирующее вещество преобразует в видимые лучи.

Технические характеристики: цоколи, вес и цветовая температура

Цоколь служит для крепления лампы к патрону светильника и для подачи питания к нему. Основные виды цоколей:

  • Резьбовые — обозначаются (Е). Колба вкручивается в патрон по резьбе. Применяются диаметры по ГОСТу 5 мм (Е5), 10 мм (Е10), 12 мм (Е12), 14 мм (Е14), 17 мм (Е17), 26 мм (Е26), 27 мм (Е27), 40 мм (Е40).
  • Штырьковые — обозначаются (G). В конструкцию входят штырьки. В выражение типа цоколя входит расстояние между ними. G4 – расстояние между штырьками 4 мм.
  • Штифтовые — обозначаются (В). Цоколь соединяется с патроном двумя штифтами, расположенными по внешнему диаметру. Маркировка зависит от расположения штифтов:
  • ВА — симметричное;
  • ВАZ — смещение одного по радиусу и высоте;
  • ВАY— смещение по радиусу.

Следующая за буквами цифра указывает диаметр цоколя в мм.

Для правильной утилизации необходима информация о весе люминесцентной лампы. Запрещено выбрасывать использованные источники света в ёмкости для бытового мусора. Они сдаются для уничтожения в специальные организации. Отработанный материал принимают у населения по весу. Средний вес лампы – 170 г.

На лампе указывают цветовую температуру, единицей измерения служит градус Кельвина (К). Характеристика показывает близость свечения лампы к источникам естественного света. Она делится на три диапазона:

  1. Тёплый белый 2700К – 3200 К — лампы с такой характеристикой излучают белый и мягкий свет, подходят для жилых помещений.
  2. Холодный белый 4000К – 4200 К — подходят для рабочих помещений, общественных зданий.
  3. Дневной белый 6200К – 6500 К — излучают белый свет холодных тонов, подходят для нежилых помещений, для улиц.

Температура света влияет на цвет окружающих предметов. Цветовая температура люминесцентных ламп зависит от толщины люминофора. Чем больше толщина, тем ниже цветовая температура лампы в Кельвинах.

Световой поток

Световой поток определяет количество света, которое даёт источник, измеряется в Люменах. Характеризует эффективность освещения. Зависит от мощности лампы. Величина указана на упаковке, по ней косвенно судят о параметрах энергосбережения.

Люминофоры и спектр излучаемого света

Люминофор превращает ультрафиолетовые лучи в видимый свет. У дешёвых моделей однослойное люминесцирующее вещество на внутренней поверхности трубки. У ламп жёлтое или голубоватое свечение с цветовым искажением.

У дорогих видов покрытие люминофора состоит из трёх или пяти слоёв. Это позволяет равномерно распределяться излучению и добиваться подобие естественного освещения. В специальных типах ламп используют ультрафиолетовые лучи. Они применяются для птицеферм и для обеззараживания помещений в больницах.

В зависимости от состава спектрального излучения лампы бывают:

  • Стандартные. Поверхность покрыта однослойным люминофором. Свечение имеет различные оттенки белого цвета. Источники света применяют для освещения общественных зданий.
  • Улучшенной цветопередачи. Применяют трёх и пятислойный люминофор. Световой поток повышается на 12%, по сравнению со стандартными лампами. Более точная передача цвета создаёт лучшие условия для восприятия. Лампы применяют в местах, где требуется точная информация об освещаемых предметах: в витринах, мебельных салонах, музеях, выставках.
  • Специальные. Применяют напыление с добавками или особый тип. В спектре выделяются полосы заданной частоты, зависящие от назначения лампы. Примером служат бактерицидные лампы, обеззараживающие воздух, помещения, воду.

Устройство, строение и состав лампы дневного света

Лампа дневного света состоит из стеклянной трубки, запаянной с двух сторон. На внутреннюю поверхность стекла нанесён слой люминофора. Внутри создан вакуум и добавлен инертный газ с парами ртути. С двух противоположных концов трубки расположены электроды, между которыми при прохождении тока появляется электрический тлеющий разряд.

Принцип действия

Принцип действия заключается в возникновении разряда между электродами при подключении источника питания. Разряд взаимодействует с парами ртути и газа, вызывая невидимое для глаз ультрафиолетовое излучение. Для преобразования его в видимый свет, служит люминофор. Состав люминофора влияет на оттенки свечения лампы.

При использовании лампы необходимы дроссель или балласт, обеспечивающий запуск лампы, устранение мерцания. Применяют типы балластов:

  • электромагнитные — имеют механический принцип действия, сокращают срок службы лампы;
  • электронные — работают без звука, обеспечивают мгновенное включение ламп.

Люминесцентные лампы. Устройство, параметры, технические характеристики ламп.

5.1. Устройство и принцип работы. Достоинства и недостатки

Люминесцентная лампа (ртутная лампа низкого давления; далее по тексту — ЛЛ) является газоразрядным источником света (рис. 5.1 и 5.2). Конструктивно она представляет собой стеклянную трубку с нанесенным на внутреннюю поверхность слоем люминофора. В торцы трубки введены вольфрамовые спиральные электроды. Для повышения эмиссионной способности на электроды наносится оксидная суспензия, изготовляемая из карбонатов или перекисей щелочноземельных металлов.

Внутри лампы находятся разреженные пары ртути и инертный газ (аргон). Давление ртутных паров в ЛЛ зависит от температуры стенок лампы и составляет при нормальной рабочей температуре 40 °С примерно 0,13–1,3 Н/м2 (10–2–10–3 мм рт. ст.).

Рис. 5.1. Линейные люминесцентные лампы

Такое низкое давление обеспечивает интенсивное излучение разряда в ультрафиолетовой области спектра (преимущественно с длиной волны 184,9 и 253,7 нм). Под действием электрического

напряжения (поля), приложенного к электродам, в лампе возникает газовый разряд.

При этом проходящий через пары ртути ток вызывает ультрафиолетовое излучение. На внутреннюю поверхность лампы нанесен слой особого вещества (люминофор). Наиболее распространенным люминофором является галофосфат кальция, активированный сурьмой и марганцем.

Изменяя соотношение активаторов, можно получить люминофоры разных марок и изготавливать лампы разной цветности.

Рис. 5.2. Строение линейной люминесцентной лампы

Ультрафиолетовое излучение, воздействуя на люминофор, заставляет его светиться, т. е. люминофор преобразует ультрафиолетовое излучение газового разряда в видимый свет. Стекло, из которого выполнена ЛЛ, препятствует выходу ультрафиолетового излучения из лампы, тем самым предохраняя наши глаза от вредного для них излучения.

Исключением являются бактерицидные и ультрафиолетовые лампы; при их изготовлении применяется увиолевое или кварцевое стекло, пропускающее ультрафиолет.

Широкое распространение на сегодня получают ЛЛ с амальгамами In, Cd и других элементов. Более низкое давление паров ртути над амальгамой дает возможность расширить температурный диапазон оптимальных световых отдач до 60 °С вместо 18–25 °С для чистой ртути.

При повышении температуры окружающей среды сверх допустимой нормы (25 °С для чистой ртути и 60 °С для амальгам) возрастают температура стенок и давление паров ртути, а световой поток снижается.

Еще более заметное уменьшение светового потока наблюдается при понижении температуры, а, значит, и давления паров ртути. При этом резко ухудшается и зажигание ламп, что делает невозможным их использование при температурах ниже –10 °С без утепляю- щих приспособлений.

В связи с этим представляют интерес безртутные ЛЛ с разрядом низкого давления в инертных газах. В этом случае люминофор возбуждается излучением с длиной волны от 58,4 до 147 нм. Поскольку давление газа в безртутных ЛЛ практически не зависит от окружающей температуры, неизменными остаются и их световые характеристики.

На сегодняшний день проблема работы ЛЛ при низких температурах решена:

– использованием ЛЛ нового поколения ламп Т5 (с диаметром трубки 16 мм);

– применением компактных люминесцентных ламп;

– питанием ЛЛ от высокочастотных электронных пускорегулирующих аппаратов (ЭПРА).

Световая отдача ЛЛ повышается при увеличении размеров (длины) за счет снижения доли анодно-катодных потерь в общем световом потоке. Поэтому рациональнее использовать одну лампу на 36 Вт, чем две по 18 Вт.

Срок службы ЛЛ ограничен дезактивацией и распылением (истощением) катодов. Отрицательно сказываются на сроке службы также колебания напряжения питающей сети и частые включения и выключения ламп. При использовании ЭПРА эти факторы сведены к минимуму.

Достоинства люминисцентных ламп

Широкое использование ЛЛ связано с тем, что они имеют ряд значительных преимуществ перед классическими лампами накаливания:

во-первых, это высокая эффективность, КПД составляет 20–25 % (у ламп накаливания около 7 %), а светоотдача (т. е. количество излучаемых люменов на единицу потребляемой мощности) лежит в пределах 70–105 лм/Вт (у ламп накаливания 7–12 лм/Вт).

во-вторых, длительный срок службы — до 20000 ч (у ламп накаливания — 1000 ч и сильно зависит от напряжения питания).

Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом) значительное физиологическое и психологическое воздействие, в основном благотворное.

Дневной свет — самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонтом. На смену дневному свету приходит искусственное освещение.

Долгие годы для искусственного освещения жилья использовались (и используются) только лампы накаливания — тепловой источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.

Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициент полезного действия 6–8 %, а срок службы очень мал — не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен. Вот почему вполне закономерным оказалось появление ЛЛ — разрядного источника света, имеющего в 5–10 раз большую световую отдачу, чем лампы накаливания, и в 8–15 раз больший срок службы.

Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья — компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (компактность, комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.

На рис. 5.3 представлено сравнение компактной ЛЛ с лампой накаливания. Как видно из термографического рисунка, лампа накаливания (слева) 92–94 % электроэнергии преобразует в тепло и лишь 6–8 % — в свет, тогда как компактная люминесцентная лампа (справа), давая такой же световой поток, расходует на 80 % меньше электроэнергии.

Рис. 5.3. Сравнение теплого поля компактной люминесцентной лампы (справа) и лампы накаливания

В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различ-

ного спектрального состава — теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки.

Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения (они будут приведены ниже).

Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80 % времени в закрытых помещениях.

Выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.

А специальные загарные ЛЛ типа CLEO (фирмы PHILIPS) предназна- чены для принятия «солнечных» ванн в помещении и для других косме- тических целей.

При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования.

Таким образом, ЛЛ, обеспечивающие достаточно много света в квартире, сохраняют тем самым зрение, снижают утомляемость, повышают работоспособность и поднимают настроение; кроме того, спектральный состав их излучения легко варьируется по цвету. Все это делает такие лампы исключительно привлекательными для потребителя.

Недостатки люминисцентных ламп

Имеют ЛЛ и некоторые недостатки. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом.

Балласт, он же пускорегулирующий аппарат (ПРА), — электро- техническое устройство, обеспечивающее режимы зажигания (но не всегда само зажигание) и нормальную работу ЛЛ.

Сильна зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 5–55 °С, оптимальной считается 20 °С). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).

Об ультрафиолете. Природа газового разряда такова, что любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления. В частности, избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз.

Но было доказано, что работа в течение года (240 рабочих дней по 8 часов в день) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течение 12 дней летом по одному часу в день в полдень.

Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере. Следовательно, о вреде обычного люминесцентного освещения говорить не приходится.

Важен вопрос ограничения пульсации светового потока. Дело в том, что устаревшие линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет не постоянный во времени, а «микропульсирующий». При имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду. И хотя эта частота выше критической для глаза и, следовательно, мелькание яркости освещаемых объектов глазом не улавливается, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности.

В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.

О ртути. В лампу для ее работы вводится капля ртути — 30–40 мг (в компактных люминесцентных лампах — 2–3 мг, а в некоторых типах амальгамных компактных люминесцентных ламп ртути в чистом виде практически нет — она находится в связанном состоянии).

В термометре, имеющемся в каждой семье, содержится 2 г (т. е. в 100 раз больше, чем в ЛЛ) ртути.

Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, — тщательно собрать и удалить ртуть, однако содержание в лампе столь ничтожного количества ртути не представляется поводом для серьезного беспокойства.

ЛЛ в доме — это не только более экономичный, чем лампа накаливания, источник света. Грамотное освещение люминесцентными лампами имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами, меньшая яркость ламп и значительно меньшее выделение тепла.

Классификация лл ведущих производителей

На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют не отечественные производители, а мировые светотехнические брэнды:

– германская фирма OSRAM ;

– голландская фирма PHILIPS ;

– американская фирма GE Lighting (General Electric) .

Они предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет. Свои люминесцентные лампы производители разделяют на две большие категории:

категория 1 — люминесцентные лампы ЛЛ (FL — Fluorescent Lamps);

категория 2 — компактные люминесцентные лампы КЛЛ (CFL — Compact Fluorescent Lamps).

ЛЛ делятся на три группы:

а) по спектральному составу излучения:

• с улучшенной цветопередачей;

б) по электрической мощности:

• слабомощные — до 18 Вт;

• средней мощности — 18–58 Вт;

• мощные — свыше 58 Вт;

в) по диаметру трубки:

г) по форме и длине трубки:

д) по светораспределению:

• с ненаправленным светоизлучением;

• с направленным светоизлучением (рефлекторные, щелевые, панельные и др.).

Характеристики и параметрами люминесцентных ламп

Основными характеристиками и параметрами люминесцентных ламп, которые указывают фирмы-производители в своих технических каталогах и которые необходимы потребителю для правильного выбора той или иной лампы, являются:

– мощность лампы (Вт);

– световой поток (лм);

– цветовая температура или CCT — Correlated Color Temperature (К);

– индекс цветопередачи, Ra или CRI — Color Rendering Index;

– габаритные размеры и исполнение.

5.2. Стандартные люминесцентные лампы

Особенности ламп, которые нужно учитывать

Встандартных лампах используется широкополосный дешевый люминофор — галофосфаткальцияимагния, активированныйсурьмойимарганцем (ГФК). Недостаток этих ламп — низкий индекс цветопередачи Ra = 50–70, что приводит к искаженной цветопередаче освещаемых предметов.

Достоинство — дешевизна (в 2–4 раза дешевле ламп с высокой цветопередачей). Именно этими ЛЛ известны отечественные производители:

– ОАО «СВЕТ» (Смоленский электроламповый завод),

– ОАО «ЛИСМА», г. Саранск,

Лампы этого типа рекомендуется использовать там, где не требу- ется точное определение цветовых оттенков: для освещения подва- лов, гаражей, складских помещений, наружного освещения.

Нередки случаи, когда потребитель, узнав о экономичности использования ЛЛ, решил заменить у себя лампы накаливания и приобрел ЛЛ с низким индексом цветопередачи и цветовой температурой 6000 К голубоватого оттенка. У ламп накаливания индекс цветопередачи Ra = 95 и цветовая температура 2700 К — теплый цвет. В итоге при свете такой ЛЛ привычные окружающие предметы поменяли свой цветовой оттенок. В результате этого возникает дискомфорт и появляется раздражение от неудачного эксперимента.

Это в полной мере касается и компактных ЛЛ (КЛЛ) китайско-польскотурецкого производства с ненормированным индексом цветопередачи.

Пример маркировки стандартных зарубежных ЛЛ показан на рис. 5.4.

Маркировка отечественных ЛЛ обычно состоит из 2–3 букв и цифр.

Первая буква Л означает люминесцентная. Следующие буквы означают цвет излучения: Д — дневной;

К, Ж, З, Г, С — соответственно: красный, желтый, зеленый, голубой, синий;

У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества — буквы ЦЦ.

Рис. 5.4. Маркировка стандартных зарубежных люминесцентных ламп

В конце ставят буквы, характеризующие конструктивные особенности:

Б — быстрого пуска.

Цифры обозначают мощность в ваттах.

ЛБ 40 — люминесцентная лампа белого цвета излучения мощностью 40 Вт.

ЛДЦ 40-2 — люминесцентная лампа дневного цвета излучения, улучшенной цветопередачи мощностью 40 Вт, двойка после мощности показывает, что лампа модернизированная, у нее уменьшен диаметр колбы с 38 мм до 32 мм при сохранении световых характеристик.

Расшифровка и соответствие кодов цветности различных фирм приведены в табл. 5.1.

Таблица 5.1 Расшифровка и соответствие кодов цветности различных фирм

Особенности люминесцентных ламп

Люминесцентные лампы — это устройства газоразрядного типа, функционирующие за счет ртутных паров. Часто их устанавливают в помещениях офисов, школ, садов. Популярность оборудования обусловлена разнообразием форм, цветов и размеров.

Достоинства и недостатки

Характеристики изделий зависят от температуры среды. Это обусловливается силой давления ртутных паров, располагающихся внутри изделия. Если температура стенок колбы равняется сорока градусам, светильник работает на максимуме.

Главные достоинства оборудования состоят в следующем:

  • высокая степень светоотдачи, достигающая максимум 75 лм/Вт;
  • большой срок работы (до 10 тысяч часов);
  • небольшая яркость, позволяющая светить, не слепя при этом глаза.

Недостатки оборудования следующие:

  • Ограниченная мощность люминесцентных ламп (единичная) при больших габаритах.
  • Сложное подключение оборудования.
  • Отсутствие реальной возможности обеспечения питания товара током с постоянной величиной.
  • При отклонении температуры воздуха от стандартных показателей (18-25 градусов) мощность подаваемого света значительно меньше. Если в помещении холодно (меньше десяти градусов), она может не заработать.

Анализируя достоинства и недостатки, следует вывод, что оборудование подходит для использования в местах, где оно оправдывает необходимость его эксплуатации и позволяет достичь эффекта, который не получится от изделия другого типа.

Технические характеристики

Характеристики оборудования зависят от ряда показателей:

Изделия также разграничиваются в зависимости от способа использования и типа помещения, в котором они будут размещаться.

Размеры

Размер трубки (диаметр) указывается при продаже в миллиметрах. В технической документации обозначение чаще всего фиксируется в дюймах (восьмых частях). По стандартам оборудование выпускается в следующих вариантах (диаметр):

  • 7 миллиметров.
  • 16 миллиметров.
  • 26 миллиметров.
  • 38 миллиметров.

Размер подбирается в зависимости от сферы использования, места размещения и площади помещения.

Мощность

В настоящее время выпускается больше сотни разнообразных типов ламп. Чаще всего используются осветительные приборы мощностью от 15 до 30 ватт при напряжении 127 Вольт, от 40 до 125 при стандартном напряжении 220 Вольт.

При любой мощности срок службы оборудования может достигать 10 тыс. часов.

Разновидности

В зависимости от типа светоподачи лампы делятся на семь видов:

  • люминесцентная (Л);
  • дневной свет (Д);
  • белый свет (Б);
  • тепло-белый свет (ТБ);
  • холодный белый свет (ХБ);
  • амальгамная (А);
  • улучшенная цветопередача (Ц).

В зависимости от варианта использования лампы делятся на два вида:

Каждый из этих типов имеет свои особенности.

Линейные

Люминесцентные лампы линейного вида используются в качестве варианта подсветки местного типа:

  • на рабочих местах;
  • на прилавках в магазинах;
  • подсветка мебели;
  • гардероб.

Оборудование линейного типа может использоваться как освещение административных, общественных помещений и площадей торгового назначения.

Преимущества использования таких ламп заключаются в следующем:

  • Улучшенная передача цвета.
  • Длительный период службы оборудования — максимально от десяти до тринадцати тысяч часов.
  • Высокая интенсивность света — от 55 лм/Вт.

Обратите внимание! Линейные источники света выпускаются в виде длинных широких или тонких приборов в зависимости от места размещения.

Компактные

Технические характеристики люминесцентных компактных ламп позволяют использовать этот источник света со значительной экономией благодаря энергосберегающим технологиям. Они уменьшают энергозатраты до 80 % в сравнении с простыми лампочками накаливания аналогичной яркости.

Люминесцентные компактные лампы позволяют стать полноценной заменой стандартным лампам накаливания. Их сфера применения достаточно широка:

  • освещение внутри помещений (офисы; кабинеты; залы складского, производственного типа; помещения для проживания; торговые помещения, площади);
  • освещение снаружи помещений (зоны для пешеходов, торговые части).

Использование компактных энергосберегающих ламп позволяет уменьшить энергопотребление на 80 %.

Область применения

Благодаря превосходным техническим характеристикам люминесцентных энергосберегающих ламп (широкой поверхности излучения, высокой энергетической эффективности, возможности подбора подходящего цвета), оборудование можно использовать во многих сферах.

Световые дневные лампы помогают создать освещение приятное для глаз освещение, сохраняют окраску окружающих объектов, позволяют в точности воспроизвести все контрасты цветов.

В зависимости от сферы применения выбирается подходящий цвет освещения:

  • ярко-белый — для мест, в которых нужно добиться совмещения в органичном варианте естественного освещения с искусственным, а также добавить теплые оттенки, помогающие создать дома уют;
  • лампы разных цветов используются для декорирования помещения. С помощью рассеянного света от энергосберегающих ламп освещают оранжереи, аквариумы, рабочую зону на кухне или в ванных комнатах. Они позволяют добиться комфортного освещения в кабинетах, предназначенных для работы, выставочных или торговых павильонах.

Важно! Широкий спектр вариантов позволяет использовать люминесцентные лампы в различных сферах как для применения дома или на улице, так и для развития бизнеса.

Как правильно подключить

Правильное подключение люминесцентной лампы по схеме подразумевает использование дросселя и стартера. Последний представляет источник неонового света с низкой мощностью. Важно разобраться, какие особенности есть у каждого из этих элементов.

В устройстве размещены биметаллические контакты. Питание элемента осуществляется от электросети с переменной подачей тока. Все оборудование (дроссель, нити электродов и контакты стартеров) подключаются в последовательном режиме.

Стартер в схеме может быть заменен на простую кнопку электрического звонка. При корректировке вариантов подключения передача напряжения будет осуществляться с помощью удержания соответствующей кнопки в нажатом виде. После того, как светильник зажегся, ее можно отпустить.

Включение люминесцентной лампы с балластом электромагнитного типа состоит из восьми последовательных шагов:

  • включение дросселя в сеть, накопление им энергии (электромагнитной);
  • обеспечение поступления тока посредством стартерных контактов;
  • движение тока от вольфрамовым нагревательным нитям электродов;
  • нагревание стартера и электродов;
  • размыкание стартерных контактов;
  • высвобождение накопленной дросселем электроэнергии;
  • изменение величины поданного напряжения на каждом электроде;
  • подача света люминесцентной энергосберегающей лампой.

Чтобы показатели коэффициента полезного действия увеличились, а помехи, которые появляются при включении оборудования, уменьшились, указанная схема комплектуется двумя дополнительными конденсаторами.

Подключение люминесцентных ламп посредством стартера имеет следующие преимущества:

  • Простота.
  • Надежность, которая проверена длительным периодом работы.
  • Приемлемая цена.

Подключение люминесцентных ламп посредством стартера имеет свои недостатки:

  • Внушительная масса прибора для освещения.
  • Большая пауза между запуском оборудования и его включением (около 3 секунд).
  • Низкий уровень эффективности этой системы при использовании в холодном помещении.
  • Высокое энергопотребление в сравнении с другими осветительными приборами.
  • Большой шум от дросселя при эксплуатации.
  • Негативное воздействие на зрение мерцания, исходящего от лампы.

Стартер выполняет две ключевые задачи:

  • обеспечение включения лампы;
  • пробой газового промежутка. Чтобы это реализовалось, после длительного процесса нагревания ламповых электродов происходит разрыв цепи. В результате этого происходит мощный импульсный выброс и возникает пробой.

Дроссель выполняет три ключевые задачи:

  • Ограничение предельной величины переменного тока в процессе замыкания электрических проводов.
  • Генерация напряжения, силы которого будет достаточно для пробоя газов.
  • Поддержание стабильного разрядного горения на постоянном уровне.

Процесс подключения люминесцентной лампы включает три этапа:

  • параллельное подключение стартера к боковым штыревым контактам, расположенным на выходе светильника с энергосберегающей лампочкой. Контакты представлены в виде выходов нитей накаливания полностью герметичной колбы;
  • подключение дросселя на оставшиеся свободные контакты;
  • параллельное подключение конденсатора к питающим частям контактов. За счет использования конденсатора происходит компенсация реактивной мощности, уменьшаются сетевые помехи.

Люминесцентные лампы — это хороший выбор для разных категорий потребителей. Они отлично подходят для использования дома, в торговых павильонах, в помещениях производственного назначения, на улицах и т. д. Благодаря разнообразию видов, форм, цветов каждый человек сможет подобрать подходящий ему вариант осветительного прибора в зависимости от целей использования и места установки.


Что такое и какие бывают люминесцентные лампы дневного света

Что такое люминесцентные лампы

Вся планета давно уже обеспокоена вопросом экономии электроэнергии. Обычные лампы накаливания уже можно признать морально устаревшими. Низкий КПД, а об энергосбережении вопрос можно и не поднимать. При их работе экономии электроэнергии просто не существует. Поэтому одним из вариантом будут газоразрядные излучатели. Они созданы в России под руководством С.И. Вавилова в 1936 году.

Лампы люминесцентные (газоразрядные) — это колба с парой электродов. Им можно придать любую форму. При подаче напряжения между электродами начинается эмиссия электронов (тлеющий разряд), создающая излучение света. Свет этот мы не можем видеть. Спектр в ультрафиолетовом диапазоне. Чтобы мы могли получить видимый свет (длина волны должна быть в пределах видимого нами спектра) внутреннюю поверхность колбы покрывается веществом, которое может излучать видимый свет – люминофором. При разряде люминофор начинает светиться. Герметичная колба заполнена инертным газом и парами ртути. Ее наличие необходимо для тлеющего разряда. Жидкий металл его усиливает. Инертный газ безвреден для человека, так как он не вступает ни в какие химические реакции. Но, ртуть – метал опасный для человека. Поэтому возникают проблемы утилизации и вопросы о том, как избежать ртутного заражения.

Принцип работы и устойство ламп

Показатели спектральной цветопередачи существенно выше, чем у раскаленной вольфрамовой нити. Их свет дает натуральные оттенки, для глаз такое освещение более полезно, а глаза устают меньше.

Условно выделено три типа газоразрядных источников света – низкого (не более 0,01 МПа), высокого (0,1 МПа до 1 МПа) и сверхвысокого давления (более 1МПа). Они имеют значительные различия в конструкции.

При подаче напряжения электроды (катоды) разогреваются, между ними возникает тлеющий разряд, который вызывает свечение люминофорного покрытия.

Для создание ультрафиолетового излучения применяется газоразрядные лампы. Их отличие состоит лишь в том, что применяется кварцевое стекло для изготовления колбы. Люминофорное покрытие отсутствует.

Обычное стекло его не пропускает. Такие приборы применяются часто в соляриях и для обеззараживания помещений.

Как подключить люминесцентную лампу

В традиционной схеме всего три элемента:

Дроссель представляет собой обычную катушку индуктивности с наборным сердечником из пластин. Стартер – устройство, состоящее из малогабаритной неоновой лампы и конденсатора. Внутри ее колбы находятся подвижные биметаллические контакты. В момент подачи напряжения между биметаллическими контактами стартера возникает разряд, его электроды изменяют свою геометрию и замыкают цепь. Дроссель играет роль балласта. Электроды источника света прогреваются, стартер отключается, возникает тлеющий разряд, вызывающий свечение люминофора, нанесенного на внутреннюю сторону колбы. Согласно ГОСТам, схема должна включиться в течение максимум 10 секунд.

Для включения двух ламп не нужно дублировать схему. Можно использовать только один дроссель.

Обе этих схемы можно дополнить конденсатором, включенным параллельно к источнику питания. Это улучшит режим. В первой схеме параметры мощности источника света, дросселя, стартера должны совпадать. Во второй схеме параметры дросселя должны быть равны сумме мощностей двух ламп, а параметры стартеров должны соответствовать мощности каждой из ламп.

Выбор конденсатора осуществляется исходя из номинала мощности ЛЛ. Конденсатор в таком источнике света служит для компенсации реактивной мощности, и при отсутствии её учёта как бы не обязателен. Есть — хорошо, нет — ничего страшного. Не редко, при перепадах напряжения или некачественном конденсаторе происходит его возгорание.

Люминесцентные лампы (ЛЛ)

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Существует и так называемая схема холодного старта. Она позволяет запустить даже лампу со сгоревшими электродами. Кроме того, схема с умножителем напряжения увеличивает период эксплуатации источника света.

Этот вариант несколько сложнее и применяется при мощностях не более 40 Вт. Здесь лампа питается постоянным током и включение происходит практически мгновенно, так как выпрямленное напряжение суммируется. Довольно быстро ртуть будет скапливаться в районе одного из электродов, при этом яркость падает. В этом случае достаточно поменять полярность. Конденсаторы С1 и С2 должны иметь напряжение порядка 900 В. А С3 и С4 – от 1000 В. Обычно применяют слюдяные конденсаторы. На электроды прикладывается напряжение порядка 900 Вольт. Со временем люминофор конечно же выгорит, и лампа будет подлежать замене и утилизации. Эта хороша тем, что позволят применять лампы с электродами, находящимися в обрыве.

Существуют и полностью готовые решения – ЭПРА. Это полностью полупроводниковое устройство, которое пришло на смену электромагнитной классике.

Собрать готовый светильник с ним очень просто.

На входные клеммы устройства подается напряжение питания. Выходные клеммы предназначены для непосредственного подключения лампы.

Достоинства электронного пуско-регулирующего аппарата:

  • Простота подключения.
  • Повышает срок эксплуатации лампы.
  • Снижает время включения лампы.
  • Отсутствует мерцание при запуске.
  • Долговечность.

Подробнее о ЭПРА вы можите прочитать – тут

Осветители на лампах высокого давления имеют такую схему.

Дроссель выполняет роль балластного устройства. Предохранитель защищает лампу и дроссель от скачка напряжения.

Как проверить люминесцентную лампу

Неисправности могут визуально проявляться таким образом.

  • Лампа не зажигается совсем.
  • Наблюдается мерцание при работе.
  • Мерцание перед выходом на рабочий режим.
  • Гудение.
  • Мерцание при горении.

Во время эксплуатации газоразрядные лампы могу потерять работоспособность. При сборке осветительного прибора на основе люминесцентных ламп иногда источник света желательно проверить до установки.

Первоначально требуется провести осмотр на наличие повреждений. Если колба имеет повреждения, то использовать такую лампу нельзя. То же самое касается и сеточки трещин. Такая колба во время работы однозначно разрушится, а ртуть может привести к заражению помещения.

Вторым моментом следует осмотреть колбу в районе расположения электродов, там не должно быть потемнений на внутренней стороне.

Обратимся к устройству самой лампы. С двух сторон у нее размещены электроды, они делаются из вольфрама, так как это тугоплавкий металл. Для увеличения срока службы эти электроды покрываются щелочным соединением. Это способствует облегчению зажигания тлеющего разряда и защищает электроды. Часты включения и выключения влекут за собой частое нагревание и остывание защитного покрытия. Таким образом со временем оно просто отслаивается, образуются незащищенные участки на вольфрамовом электроде. В момент запуска вольфрамовая нить разогревается неравномерно. Открытые участки разогреваются сильнее происходит сначала точечное выгорание, со временем произойдёт разрушение электрода. О начале выгорания и свидетельствует такое потемнение. Это – щелочные соединения, которые осаждаются на люминофорном слое. Но даже если электрод находится в обрыве, а колба лампы цела и люминофор не обсыпался, то лампу еще возможно какое-то время использовать. При этом применяется схема умножителя.

Если на контактах электродной нити, либо по краям самой газоразрядной лампы видно оранжевое свечение, при этом освещение не включается, то это говорит о разгерметизации колбы, внутри уже присутствует воздух.

Довольно часто причина отсутствия освещения банальна: отсутствие контакта. Дело в том, что контактные пластины и контактные штырьки для подключения электродов окисляются. Иногда они могут просто быть ослаблены. Восстанавливается это достаточно быстро, их следует почистить при помощи мелкозернистой наждачки, либо жидкости на основе спирта. Отлично подходит для этих целей изопропиловый спирт (он же изопропанол). Также не произойдет розжига при низких температурах (менее минус 50 градусов Цельсия) и при скачках напряжения свыше семи процентов.

Целостность электродов можно проверить еще и мультиметром. Возможно использовать режим прозвонки (значок диода на приборе). В случае целостности контактов, Вы услышите писк, как при замыкании щупов. Можно воспользоваться режимом омметра, прибор должен показать сопротивление 3-16 Ом. В случае индикации бесконечного сопротивления электрод находится в обрыве и в традиционных схемах (также как и с ЭПРА) использование принципиально невозможно.

При использовании классической схемы со стартером и дросселем, лампу, у которой хотя бы один из электродов находится в обрыве зажечь не удастся. Если балластный дроссель находится в обрыве, то лампа также не загорится. Исправный дроссель должен обладать сопротивлением 60 Ом, плюс-минус 5 Ом. Вышедший из строя дроссель можно определить «на глаз» по косвенным признакам: характерный запах, пятна.

Типы цоколей ламп дневного света

Вне зависимости от конструкции лампы, она в любом случае будет оборудована цокольными элементами. Это обязательный элемент. Они служат для подключения и подачи электрического тока на электроды осветительного прибора. Цоколь предназначен для надежного крепления и обеспечения контакта. При покупке обязательно надо обратить внимание на тип цоколя, в противном случае просто не удастся установить лампу. Цоколь и патрон обязательно должны взаимно соответствовать.

Условно их можно подразделить на две большие категории: резьбовые и штыревые. В последнее время резьбовые имеют более широкое распространение. Их можно назвать классикой. В быту они используются без каких-либо переделок патрона, т.е. люминесцентную лампу с цоколем Е14 и Е27 можно применить вместо обычных ламп накаливания. Основными характеристиками являются диаметр и расстояние между витками.

Штыревые цоколи люминесцентных ламп расположены как правило у торцов источника света. Это могут быть и прямые, и U-образные лампы.

Маркировка и технические характеристики

Напряжение в сети питания переменного тока в разных странах различается. К примеру, в странах бывшего СССР принято значение 220 Вольт, в США, Японии и других странах – 110 Вольт.

У нас наиболее востребованы осветительные приборы с цоколями Е14, Е27, Е40. Обычно маркировка осуществляется в формате Ехх. Буква «Е» – общепринятая, от фамилии изобретателя Эдисона (Edison). А хх – это цифры, означающие диаметр в мм.

Е14 – самый маленький из упомянутых. Обычно для небольших лампочек в виде свечи. Может применяться для подсветки и маленьких светильников.

Е27 – основной для нашей страны. Сейчас он применяется и для ламп накаливания, энергосберегающих и светодиодных.

Е40 – в быту практически не встречаются и предназначены для мощных осветителей. В основном он принят на производственных предприятиях, где света должно быть много. Или, например, уличное освещение.

Есть еще и Е10, но он применяется для низковольтных ламп накаливания, например может применяться в елочных гирляндах. Лампы с таким цоколем не применяются для освещения, только для декоративных целей.

На лампах со штыревым цоколем маркировка в обязательном порядке содержит латинскую букву G. После идут цифры, которые означают дистанцию между центрами штырьков в миллиметрах. Перед цифрами может дополнительно размещаться одна из букв U, X, Y, Z.

Существует российская и международная маркировка осветительных приборов.

Последние три цифры маркировки характеризуют световой поток, который дает конкретный осветитель: на картинке 8 – это цветопередача, 40 (две последние) – это цветовая температура. В данном случае индекс цветопередачи равен 80Ra, а цветовая температура 4000 К. Здесь значение 840 можно трактовать как лампа белого света для рабочих поверхностей с очень хорошей цветопередачей и светотдачей. Такие применяются в жилых помещениях и для работы. Цветовую температуру лучше выбирать не менее 4000 К. Обычный дневной свет имеет этот показатель в диапазоне от 5000 К до 6500 К. При цветовой температуре в 2700 К предметы, на которые падает свет, визуально могут иметь коричневый оттенок. Чем больше первая цифра, тем лучше и комфортнее глазу.

Российская маркировка представлена в рисунке ниже.

Спектр излучения люминофора для люминесцентных ламп

Человек способен видеть излучение в диапазоне от 380 до 780 нм. Свет – это энергия в различных диапазонах излучения. Солнечный свет включает в себя не только видимый человеком диапазон. Имеются еще инфракрасный и ультрафиолетовый. Обычно источники света в жилых и рабочих помещениях снабжены УФ-фильтрами. Такое решение снижает вредное для кожи излучение.

Существуют и специальные лампы для бактерицидной обработки помещения, так как раз и необходимо отсутствие УФ-фильтра.

Обычно люминесцентные лампы дают световой поток спектрально приближенный к обычному солнечному свету.

Левая часть изображение показывает спектр солнечного света. Правая – спектр хорошей лампы дневного света. Можно увидеть, что спектрально они похожи. Свет солнца имеет более ровную характеристику. Свет ЛЛ имеет ярко выраженный пик в зеленой части, и резкий спад в красной части. Спектр свечения многих люминесцентных ламп захватывает весь видимый диапазон. Дорогие лампы захватывают часть инфракрасного и ультрафиолетового диапазона. Чем ближе искусственный свет по спектру к естественному, тем более он благоприятен для человека. Соответственно, показатели жизнедеятельности будут выше. Это уже доказано физиологическими исследованиями. Поэтому рекомендуется для рабочих мест и в жилых помещениях применять источники света спектр которых приближен к солнечному. В некоторых случаях люминесцентные источники света будут более предпочтительны даже в сравнении со светодиодными.

Какую люминесцентную лампу стоит выбрать

Сейчас в продаже много разных источников света. Продуманное расположение источников света создает чувство комфорта. Сложность выбора состоит в том, необходимо рассматривать не только мощностные параметры, но и цветопередачу, спектральный диапазон. С яркостью все понятно, чем больше мощность, тем больше яркость. В этом случае все зависит от линейных размеров освещаемого помещения. Если их сравнить с обычными лампами накаливания, то при равной мощности ККЛ (компактная люминесцентная лампа) имеет яркость в среднем в пять раз выше.

Цветовая температура должна коррелировать с конкретными нуждами. Цветовая температура – Важный параметр. 2700 К – это тепло-желтый свет, 4200 – обычный белый, а 6400К – холодный синий. Для глаз наиболее комфортно от 4000 К до 5000К. Существуют также осветители с различным окрасом люминофорного слоя. Это уже для дизайнерского креатива в оформлении помещений.

Сейчас много разных форм и конфигураций люминесцентных источников света для создания оформления. Теоретически возможно создать любую форму для дизайнерского проекта.

Преимущества и недостатки

Изучив материалы по газоразрядным осветительным приборам, можно понять их особенности. Такие лампы используются несколько десятилетий, можно сказать, что они уже достигли своего предела совершенствования и создать источник света, который будет еще лучше, на этих же физических принципах работы, уже невозможно.

Мы надеемся, что статья была полезна читателям.

Читайте также:  Особенности и сферы применения ретро выключателя-дергалки
Добавить комментарий