Из каких элементов состоит электрическая цепь

Электрическая цепь и ее элементы

В электрической цепи должен быть источник движения электрически заряженных частиц, которое и называется электрическим током. Иными словами, электрический ток должен иметь своего возбудителя. Такой возбудитель тока, именуемый источником (генератором), является составным элементом электрической цепи.

Электрический ток может вызывать различные по характеру эффекты — так, он заставляет светиться лампочки накаливания, приводит в действие нагревательные приборы и электродвигатели. Все эти приборы и устройства принято называть приемниками электрического тока. Так как через них протекает ток, т. е. они включены в электрическую цепь, то приемники также являются элементами цепи.

Протекание тока требует, чтобы между источником и приемником существовала связь, которая и реализуется при помощи электрических проводов, представляющих со­ бой третий важный составной элемент электрической цепи.

Электрическая цепь – совокупность устройств, предназначенных для прохождения электрического тока. Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).

Электрическая цепь – совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятии об электродвижущей силе, токе и напряжении.

Простейшая электрическая установка состоит из источника (гальванического элемента, аккумулятора, генератора и т. п.), потребителей или приемников электрической энергии (ламп накаливания, электронагревательных приборов, электродвигателей и т. п.) и соединительных проводов, соединяющих зажимы источника напряжения с зажимами потребителя. Т.е. электрическая цепь – совокупность соединенных между собой источников электрической энергии, приемников и соединяющих их проводов (линия передачи).

Электрическая цепь делится на внутреннюю и внешнюю части. К внутренней части электрической цепи относится сам источник электрической энергии. Во внешнюю часть цепи входят соединительные провода, потребители, рубильники, выключатели, электроизмерительные приборы, т. е. все то, что присоединено к зажимам источника электрической энергии.

Электрический ток может протекать только по замкнутой электрической цепи. Разрыв цепи в любом месте вызывает прекращение электрического тока.

Под электрическими цепями постоянного тока в электротехнике подразумевают цепи, в которых ток не меняет своего направления, т. е. полярность источников ЭДС в которых постоянна.

Под электрическими цепями переменного тока имеют ввиду цепи, в которых протекает ток, который изменяется во времени (смотрите, переменный ток).

Источники питания цепи – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. В современной технике в качестве источников энергии применяют главным образом электрические генераторы. Все источники питания имеют внутреннее сопротивление значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др.

В качестве вспомогательного оборудования в электрическую цепь входят аппараты для включения и отключения (например, рубильники), приборы для измерения электрических величин (например, амперметры и вольтметры), аппараты защиты (например, плавкие предохранители).

Все электроприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение.

Элементы электрической цепи делятся на активные и пассивные. К активным элементам электрической цепи относятся те, в которых индуцируется ЭДС (источники ЭДС, электродвигатели, аккумуляторы в процессе зарядки и т. п.). К пассивным элементам относятся электроприемники и соединительные провода.

Для условного изображения электрических цепей служат электрические схемы. На этих схемах источники, приемники, провода и все другие приборы и элементы электрической цепи обозначаются при помощи выполненных определенным образом условных знаков (графических обозначений).

Согласно ГОСТ 18311-80:

Вспомогательная цепь электротехнического изделия (устройства) – электрическая цепь различного функционального назначения, не являющаяся силовой электрической цепью электротехнического изделия (устройства).

Электрическая цепь управления – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие электрооборудования и (или) отдельных электротехнических изделий или устройств или в изменении значений их параметров.

Электрическая цепь сигнализации – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в приведении в действие сигнальных устройств.

Электрическая цепь измерения – вспомогательная цепь электротехнического изделия (устройства), функциональное назначение которой состоит в измерении и (или) регистрации значений параметров и (или) получении информации измерений электротехнического изделия (устройства) или электрооборудования.

По топологическим особенностям электрические цепи подразделяют:

на простые (одноконтурные), двухузловые и сложные (многоконтурные, многоузловые, планарные (плоскостные) и объемные);

двухполюсные, имеющие два внешних вывода (двухполюсники и многополюсные, содержащие более двух внешних выводов (четырехполюсники, многополюсники).

Источники и приемники (потребители) энергии с точки зрения теории цепей являются двухполюсниками, так как для их работы необходимо и достаточно двух полюсов, через которые они передают либо принимают энергию. Тот или иной двухполюсник называют активным, если он содержит источник, или пассивным – если он не содержит источник (соответственно, левая и правая части схемы).

Устройства, передающие энергию от источников к приемникам, являются четырехполюсниками, так как они должны обладать, по меньшей мере, четырьмя зажимами для передачи энергии от генератора к нагрузке. Простейшим устройством передачи энергии являются провода.

Активный и пассивный двухполюсники в электрической цепи

Обобщенная эквивалентная схема электрической цепи

Элементы электрической цепи, обладающие электрическим сопротивлением и называемые резисторами, характеризуются так называемой вольт-амперной характеристикой – зависимостью напряжения на зажимах элемента от тока в нем или зависимостью тока в элементе от напряжения на его зажимах.

Если сопротивление элемента постоянно при любом значении тока в нем и любом значении приложенного к нему напряжения, то вольт-амперная характеристика прямая линия и такой элемент называется линейным элементом .

В общем случае сопротивление зависит как от тока, так и от напряжения . Одна из причин этого состоит в изменении сопротивления проводника при протекании по нему тока из-за его нагрева. При повышении температуры сопротивление проводника увеличивается. Но так как во многих случаях эта зависимость незначительна, элемент считают линейным.

Электрическая цепь, электрическое сопротивление участков которой не зависит от значений и направлений токов и напряжений в цепи, называется линейной электрической цепью . Такая цепь состоит только из линейных элементов, а ее состояние описывается линейными алгебраическими уравнениями.

Если сопротивление элемента цепи существенно зависит от тока или напряжения, то вольт-амперная характеристика носит нелинейный характер, а такой элемент называется нелинейным элементом .

Электрическая цепь, электрическое сопротивление хотя бы одного из участков которой зависит от значений или от направлений токов и напряжений в этом участке цепи, называется нелинейной электрической цепью. Такая цепь содержит хотя бы один нелинейный элемент.

При описании свойств электрических цепей устанавливается связь между величинами электродвижущей силы (ЭДС), напряжений и токов в цепи с величинами сопротивлений, индуктивностей, емкостей и способом построения цепи.

При анализе электрических схем пользуются следующими топологическими параметрами схем:

  • ветвь — участок электрической цепи, вдоль которого протекает один и тот же электрический ток;
  • узел — место соединения ветвей электрической цепи. Обычно место, где соединены две ветви, называют не узлом, а соединением (или устранимым узлом), а узел соединяет не менее трех ветвей;
  • контур — последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз.

Старый учебный диафильм. Одна из 7 частей старого учебного диафильма “Электротехника с основами электроники”, выпущенного в 1973 году фабрикой учебно-наглядных пособий:

Обозначение электрической цепи

Во время изучения теории электрических цепей прежде всего необходимо начать с ознакомления с основными понятиями. Электрическая цепь представляет собой устройство, по которому течёт ток. Имея представление об основных терминах, необходимо рассмотреть, из чего состоит ЭЦ, а также как она устроена.

Что называется электрической цепью

ЭЦ – это комплекс элементов, при помощи которых создаётся, передаётся и потребляется электрическая энергия. Данные элементы, или участки, содержат источники электрической энергии, а также промежуточные устройства и проводники между ними, обеспечивающие неразрывность соединений.

Источниками электрической энергии являются устройства, вырабатывающие ток путём физических, химических или световых преобразований.

Важно! Приемниками электроэнергии являются устройства, работа которых напрямую зависит от активности источника.

Промежуточные элементы с функциональными устройствами служат для передачи электрической энергии от источников к приемникам. В зависимости от назначения, они непосредственно передают энергию с конкретными параметрами источника.

Виды электрический цепи

Существует 3 основных вида соединения потребителей энергии:

Общий показатель сопротивления замкнутой ЭЦ неизменно повышается при увеличении количества потребителей. Исходя из этого правила можно сделать вывод, что показатель полного сопротивления будет являться суммой индивидуальных значений каждого включённого в цепь прибора. Любой прибор, включенный в сеть, получает лишь долю напряжения, так как суммарный показатель энергетической цепи распадается на количество потребителей.

  • Параллельное соединение

Подобная схема даёт полное представление о принципе работы электрической цепи. Если этот процесс происходит непосредственно у места разветвления, то ток проходит дальше по двум нагруженным участкам, что порождает определённое сопротивление. В результате этого его значение приравнивается сумме токов, расходящихся от данной точки. Что касается сопротивления, то оно значительно снижается по мере возрастания общей проходимости ЭЦ. Параллельное соединение позволяет всем устройствам функционировать независимо друг от друга.

Важно! Если один из элементов цепи выйдет из строя или произойдет замыкание, то остальные потребители продолжат свою работу со сбоями, но полного разрыва цепи не произойдёт.

  • Комбинированное соединение
Читайте также:  Главное свойство любого электрического поля

Включить электроприборы можно обоими способами – параллельным и последовательным, и такой тип соединения будет называться комбинированным. К примеру, можно рассмотреть защитную аппаратуру. Для ее подключения можно применить последовательный вариант, но этот способ может вызвать непредвиденный разрыв цепи.

Обратите внимание! Комбинированное соединение позволяет распределить нагрузку на линиях с целью предотвращения перегрузки.

Нелинейные и линейные

Нелинейные элементы придают ЭЦ свойства, которые не могут быть достигнуты в линейных цепях (стабилизация напряжения, усиление постоянного тока). Их, как правило, делят на неуправляемые и управляемые. К первому варианту можно отнести двухполюсные устройства. Их основное предназначение – полноценная работа без воздействия управляющего фактора (полупроводниковые терморезисторы или диоды). Ко вторму варианту относятся многополюсники, используемые при воздействии на них управляющего фактора (транзисторы и тиристоры).

Свойства нелинейных элементов выражаются в вольтамперных характеристиках. Они отображают зависимость тока от напряжения, для чего составляется конкретная эмпирическая формула, удобная для расчетов.

Неуправляемые нелинейные элементы имеют одну вольтамперную характеристику. Их основным паратмером является управляющий фактор.

Цепи, включающие в себя только одиночные элементы, называют линейными. Основное свойство таких цепей — применимость принципа наложения. Это характеризуется тем, что результирующая реакция линейной цепи на несколько приложенных одновременно потребителей, равна сумме реакций на каждом участке.

Обратите внимание! У линейных элементов наблюдается постоянное сопротивление, в связи с чем график их вольтамперной характеристики представляет собой прямую линию, проходящую через начало координат.

Разветвленные и неразветвленные

ЭЦ может быть представлена в виде единого прямого элемента или иметь разветвления. На каждом участке неразветвленной цепи проходит ток с одинаковыми характеристиками. Простейшая разветвленная цепь состоит из трёх ветвей и двух узлов, в каждой из которых течет свой электрический ток. Любой участок можно идентифицировать, как отдельную составляющую цепи, образованную отдельными элементами, соединёнными последовательно в единое целое.

Узел – это точка, состоящая не менее, чем из трех ветвей. Узел, состоящий из двух ветвей, каждая из которых представляет собой продолжение другой, называют вырожденным узлом.

Внутренние и внешние

Для создания упорядоченного движения электронов, необходимо определить разность потенциалов между какими-либо отдельно взятыми участками цепи. Это обеспечивается при подключении напряжения в виде источника питания, называемым внутренней электрической цепью. Остальные компоненты цепи образуют внешнюю цепь. Для задания движения зарядов в источнике питания против направления поля, требуется приложить сторонние силы, в частности:

  • Выход вторичной обмотки трансформатора.
  • Батарея (гальванический источник).
  • Обмотка генератора.

Внешние силы, создающие движение электронов, называются электродвижущими, и они характеризуются работой, затраченной источником на перемещение единицы заряда.

Активные и пассивные

Элементы в составе электрических цепей существуют в формате активности и пассивности. В качестве активных считаются источники электроэнергии.

Базовым параметром активных участков цепи выступает их способность отдавать энергию. Источники тока вместе с ЭДС называют идеальными для электрической энергии, что обусловлено отсутствием потери энергии, поскольку их проводимость и сопротивление считаются бесконечными:

Элементами, называемыми пассивными, считают разновидности потребителей и накопителей электроэнергии. На практике специалисты применяют многополюсный прибор, функционирующий на базе двухполюсных элементов.

Все активные элементы можно определить как в независимом, так и в зависимом порядке. Первый вариант является определением источника тока и напряжения. Вторая категория рассматривается при условии зависимости указанных величин от параметров напряжения и тока. Типичными представителями выступают электролампы и транзисторы. Их функционирование происходит в режиме линейности.

Главные пассивные участки электроцепи представляют резисторы, индуктивные катушки и конденсаторы, с помощью которых осуществляется регулирование параметров силы тока и величины напряжения на отдельно взятых элементах. Резистивный показатель сопротивления относят к особым свойствам элементам. Его базовым критерием служит необратимое энергетическое рассеивание. Значение электротехники определяется по следующей формуле:

При этом R представляет собой сопротивление (измеряется в Омах), а выступает проводимостью (единица измерения – сименсы). Данные величины можно вычислить по формуле:

Индуктивность – это коэффициент пропорциональности. Конденсатор имеет свойство накопления энергии электрического поля. Линейная ёмкость определяет прямопропорциональную зависимость на основе заряда и напряжения. В таком случае, формула выглядит следующим образом:

Из каких элементов состоит электрическая цепь

Новички нередко задаются вопросом, из каких важных элементов состоит электрическая цепь. Такими составляющими являются:

В состав могут в том числе входить такие элементы, как устройства коммутации, а также приборы защиты.

Для возникновения тока, необходимо соединить две точки, одна из которых имеет избыток электронов по сравнению с другой. Другими словами, необходимо создать разность потенциалов между этими двумя точками. Как раз для получения разности потенциалов в цепи применяется источник тока.

Важно! Нагрузкой считается любой потребитель электрической энергии. Этот фактор оказывает сопротивление электрическому току и от величины сопротивления нагрузки зависит величина тока. Ток от источника энергии к нагрузке течёт по проводникам. В качестве кабеля можно использовать материалы с наименьшим сопротивлением (медь, серебро, золото).

Схема электрической цепи

Электрическая цепь, её графическое изображение, условные обозначения составляющих её элементов, а также символы представляют собой классическую схему расчетной модели. Подобный тип по-другому принимают, как эквивалентную схему замещения. По возможности, изображённая электротехника на схеме электрических цепей показывает весь процесс. Каждый реальный элемент цепи при проведении расчета заменяется элементами схемы.

В заключении следует отметить, что каждый элемент цепи, в зависимости от характера подключения и электротехнических свойств, может быть идентифицирован как источник энергии, либо как потребитель. Каждому участку на схеме ЭЦ соответствует проводник, либо конкретный прибор (трансформатор, выпрямитель, инвертор и другое электрооборудование). Только после правильного прочтения электрической схемы специалист может обеспечить её работоспособность.



Электрические цепи и их элементы

Электрическая цепь представляет собой совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. В электрической цепи постоянного тока могут действовать как постоянные токи, так и токи, направление которых остается постоянным, а значение изменяется произвольно во времени или по какому-либо закону.

Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа — элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). Эти элементы называются приемниками электрической энергии (электроприемниками). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

Источники питания цепи постоянного тока — это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи.

Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные — напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

Графическое изображение электрической цепи, содержащее условные обозначения ее элементов и показывающее соединения этих элементов, называется схемой электрической цепи. В табл. 2 показаны условные обозначения, применяемые при изображении электрических схем.

Таблица 2. Условные обозначения в электросхемахЭлемент гальванический или аккумуляторный
или Контакты замыкающие с выдержкой времениБатарея элементов
при замыкании
Генератор электромеханический постоянного тока
при размыкании
Выключатель, контакт замыкающий
при замыкании и размыкании
Выключатель автоматический
Предохранитель плавкий
Контакты контактора и электрического реле:Обмотка контактора, магнитного пускателя и реле
замыкающие
Лампа накаливания осветительная
размыкающие
переключающие
Лампа газоразрядная осветительная
Конденсатор постоянной емкости
Амперметр и вольтметр
Катушка индуктивности
Резистор постоянный
Диод полупроводниковый
Резистор переменный

Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи — несколько контуров.

Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество.

Режим холостого хода — это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр.

Режим короткого замыкания — это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

Читайте также:  Как снять статическое электричество с автомобиля

Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания.

Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Последовательное соединение элементов цепи

В этом случае все элементы подключаются к цепи друг за другом. Последовательное соединение не дает возможности получить разветвленную цепь — она будет неразветвленной. На рис. 1 показан пример последовательного соединения элементов в цепи.


Рис. 1. Последовательное соединение двух резисторов в цепи: 1 — первый резистор; 2 — второй резистор

В нашем примере взяты два резистора. Резисторы 1 и 2 имеют сопротивления R1 и R2. Поскольку электрический заряд в этом случае не накапливается (постоянный ток), то при любом сечении проводника за определенный интервал времени проходит один и тот же заряд. Из этого вытекает, что сила тока в обоих резисторах равная:

А вот напряжение на их концах суммируется:

Согласно закону Ома, для всего участка цепи и для каждого резистора в отдельности полное сопротивление цепи будет:

В случае последовательного соединения проводников напряжения и сопротивления можно выразить соотношением:

Параллельное соединение проводников

Когда два проводника соединяются параллельно, электрическая цепь имеет два разветвления. Точки разветвления проводников называют узлами. В них электрический заряд не накапливается, т. е. электрический заряд, поступающий за определенный промежуток времени в узел, равен заряду, уходящему из узла за то же время. Из этого следует, что:

где I — сила тока в неразветвленной цепи.

При параллельном соединении проводников напряжение на них будет одно и то же. Параллельное соединение проводников показано на рис. 2.


Рис. 2. Параллельное соединение двух проводников: точки а и b — узлы

Обозначим сопротивления параллельно соединенных двух проводников R1 и R2. Используя закон Ома для участков электрической цепи с данными сопротивлениями, можно выявить, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников, т. е.:

Из этого вытекает:

Данная формула справедлива только для определения общего сопротивления двух проводников, соединенных параллельно. Величину, обратную сопротивлению, называют проводимостью. При параллельном соединении проводников их сопротивления и сила тока связаны соотношением:

Соединения конденсаторов

У конденсаторов существует также два вида соединения: последовательное и параллельное.

Последовательное соединение. В этом случае обкладка одного конденсатора, заряженная отрицательно, соединена с обкладкой другого конденсатора, заряженного положительно. На рис. 3 показан пример последовательного соединения конденсаторов.


Рис. 3. Последовательное соединение двух конденсаторов

При данном типе соединения действует следующее правило: величина, обратная емкости батареи конденсаторов при последовательном соединении, равна сумме величин, обратных емкостям отдельных конденсаторов. Из этого следует:

1/С = 1/С1 + 1/С2 + 1/С3 + .

При этом типе соединения емкость батареи конденсаторов меньше емкости любого из конденсаторов.

Параллельное соединение. При параллельном соединении конденсаторов положительно заряженные обкладки соединены с положительно заряженными, а отрицательно заряженные — с отрицательными (рис. 4).


Рис. 4. Параллельное соединение двух конденсаторов

В этом случае емкость батареи конденсаторов будет равна сумме электрических емкостей конденсаторов:

Соединения источников тока

Источники тока соединить в батарею можно также двумя способами: параллельным и последовательным. Как соединять источники тока первым способом, показано на рис. 5.


Рис. 5. Параллельное соединение источников тока

При параллельном способе соединения источников тока соединяют между собой все положительные и все отрицательные полюсы. Напряжение на разомкнутой батарее будет равно напряжению на каждом отдельном источнике, т. е. при параллельном способе соединения ЭДС батареи равна ЭДС одного источника. Сопротивление батареи при параллельном включении источников будет меньше сопротивления одного элемента, потому что в этом случае их проводимости суммируются.

При последовательном соединении источников тока (рис. 6) два соседних источника соединяются между собой противоположными полюсами.


Рис. 6. Последовательное соединение источников тока

Разность потенциалов между положительным полюсом последнего источника и отрицательным полюсом первого будет равна сумме разностей потенциалов между полюсами каждого источника. Из этого вытекает, что при последовательном соединении ЭДС батареи равна сумме ЭДС источников, включенных в батарею. Общее сопротивление батареи при последовательном включении источников равняется сумме внутренних сопротивлений отдельных элементов.

Расчет электрических цепей

Основой расчета электрических цепей является определение силы токов в отдельных участках при заданном напряжении и заранее известном сопротивлении отдельных проводников. Для примера возьмем электрическую цепь, такую, как изображено на рис. 7.


Рис. 7. Простая электрическая цепь

Допустим, общее напряжение на концах цепи нам известно. Известны также сопротивления R1, R2 . R6 подсоединенных к цепи резисторов R1, R2, R3, R4, R5, R6 (сопротивление амперметра в расчет не принимается). Следует вычислить силу токов I1, I2, . I6.

В первую очередь, нужно уточнить, сколько последовательных участков имеет данная цепь. Исходя из предложенной схемы, видно, что таких участков три, причем второй и третий содержат разветвления. Допустим, что сопротивления этих участков R1, R’, R”. А значит, все сопротивление цепи можно выразить как сумму сопротивлений участков:

где R’ — общее сопротивление параллельно соединенных резисторов R2, R3 и R4, a R” — общее сопротивление параллельно соединенных резисторов R5 и R6. Применяя закон параллельного соединения, можно вычислить сопротивления R’ и R”:

1/R’ = 1/R2 + 1/R3 + 1/R4 и 1/R” = 1/R5 + 1/R6

Для того чтобы определить силу тока в неразветвленной цепи с помощью закона Ома, нужно знать общее сопротивление цепи при заданном напряжении. Для этого следует воспользоваться формулой:

Из всего вышеизложенного можно вывести, что I = I1.

Но для определения силы тока в отдельных ветвях следует сначала вычислить напряжение на отдельных участках последовательных цепей. Опять же с помощью закона Ома можно записать:

U1 = IR1; U2 = IR’; U3 = IR”

Теперь, зная напряжение на отдельных участках, можно определить силу тока в отдельных ветвях:

I2 = U2/R2; I3 = U2/R3; I4 = U2/R4; I5 = U3/R5; I6 = U3/R6

Бывают случаи, когда нужно вычислить сопротивления отдельных участков цепи по уже известным напряжениям, силе токов и сопротивлении других участков, а также определить нужное напряжение по заданным сопротивлениям и силе токов. Метод расчета электрических цепей всегда одинаков и основан на законе Ома.

Ссылки на другие страницы сайта по теме «строительство, обустройство дома»:

Электрическая цепь и ее составные части

Составные части

Любая электрическая цепь имеет следующие базовые элементы: источник тока, потребители тока, соединительные провода. Потребители тока могут состоять из более мелких элементов второго уровня, каждый из которых имеет свое наименование, функцию и параметры.

Для удобства электрические цепи изображают в виде графических схем, в которых используются общепринятые условные символы различных элементов. Обозначения элементов электрических цепей имеют интернациональный характер, классифицированы и систематизированы.

Рис. 1. Обозначения базовых элементов электрических схем:.

Разновидности цепей

Различают цепи для постоянного и переменного токов. Постоянный ток не меняет своего направления. Пример сети постоянного тока — электрические цепи автомобилей. Переменный ток меняет свое направление с определенной частотой. График зависимости переменного тока от времени в нашей сети имеет синусоидальный вид. Полярность изменяется 50 раз в секунду, что соответствует частоте 50 Гц. Под внутренней частью цепи подразумевают источники электропитания. Под внешней — провода, переключатели, бытовые и измерительные приборы.

Элементы цепи

Все электрические цепи служат для производства, передачи и потребления электрической энергии. Элементы цепей подразделяются на пассивные и активные. К пассивным относятся потребляющие и передающие электроэнергию: лампочки, нагревательные элементы, электродвигатели и т.п. К активным —- источники, генерирующие электроэнергию: аккумуляторы, генераторы, солнечные батареи, термодатчики. Кроме этого элементы делятся на двухполюсные (два вывода) и многополюсные ( три и более выводов).

Примеры составных частей электрической цепи:

  • Источник. Обычно это аккумулятор, гальванический элемент или генератор. Реже, но бывают солнечные батареи или ветрогенераторы;
  • Проводник. Необходимый элемент для транспортировки электроэнергии от источника к потребителю;
  • Потребитель. Осветительные и нагревательные приборы, двигатели, бытовая техника, компьютеры;
  • Переключающие (коммутирующие) устройства. В простейшем варианте — выключатель.

Электрический ток течет только по замкнутой цепи. Если цепь разомкнуть, то движение электронов прекратится.

Потребители электроэнергии

Перечислим основных потребителей:

  • Резисторы — потребители, которые могут иметь как постоянное, так и переменное сопротивление;
  • Конденсаторы — потребители, имеющие емкостные свойства;
  • Индуктивности — потребители, создающие магнитное поле;
  • Электродвигатель — потребитель, преобразующий электрическую энергию в механическую.

Рис. 2. Резисторы, конденсаторы, индуктивности, электродвигатель:.

Контур, узел, ветвь

Для описания и анализа схем используются следующие термины:

  • Ветвь — участок с одним или несколькими компонентами соединенными последовательно;
  • Узел — место соединения двух и более ветвей;
  • Контур — совокупность ветвей, образующих для тока замкнутый контур. Один из узлов в контуре должен быть и началом и концом пути. Остальные узлы должны встречаться не более одного раза.

Очень полезным элементом электрической цепи является предохранитель. Он предотвращает перегорание элементов цепи в случае перегрева. Предохранитель содержит легкоплавкий проводник, который перегорает в случае превышения допустимых параметров. Поменять предохранитель легче, чем найти сгоревший элемент среди сотен подобных элементов.

Читайте также:  Рабочее место слесаря-электрика

Рис. 3. Примеры участков схем: ветвь, узел, контур:.

Что мы узнали?

Итак, мы узнали что такое электрическая цепь и ее составные части. Все электрические цепи состоят из источников, проводников, потребителей и переключающих устройств.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

1.2. Электрическая цепь и ее элементы

Электрическая цепьсовокупность устройств (элементов), предназначенных для направленного движения электрических зарядов (электрического тока) и связанных с ним электромагнитных процессов.

Электрическая цепь служит для генерирования, передачи и преобразования электрической (электромагнитной) энергии и сигналов.

Основные элементы электрической цепи – источники, приемники и линии передачи.

Источник электрической энергии и сигналовустройство, преобразующее различные виды энергии неэлектромагнитной природы в электромагнитную (гальванический элемент, аккумулятор, электромеханический генератор).

Приемник электрической энергии и электрических сигналовустройство, преобразующее электрическую энергию в другие виды энергии (электротермические устройства, электрические лампы, резисторы, электрические двигатели).

Линия передачи электрической энергии и электрических сигналов – проводники (материалы, среды, имеющие свободные заряды) и электромагнитные поля, с помощью которых осуществляется передача электрической энергии и сигналов от источников к приемникам.

Кроме того, элементами электрической цепи могут быть преобразовательные, коммутационные и измерительные устройства (приборы).

Преобразователь электрической энергииустройство, преобразующее параметры (напряжение, ток, их форму, величину, частоту) электромагнитной энергии (трансформаторы, выпрямители, инверторы, преобразователь частоты).

Коммутационные устройства предназначены для изменения режима работы электрической цепи: отключение и включение источников, приемников, изменения параметров участков цепи. Это контакторы, переключатели, выключатели, разъединители.

Измерительные устройстваприборы для измерения различных параметров электромагнитных процессов, протекающих в электрической цепи (амперметры, вольтметры, ваттметры и т.д.).

Схема электрической цепиграфическое изображение электрической цепи, содержащее условные изображения ее элементов и показывающее соединение этих элементов.

ЕСКД «Обозначения условные графические в схемах». ГОСТ 2.721-74 – 2.758-81.

Приемники, источники:

–элемент гальванический;

–лампа накаливания;

–генератор постоянного тока электромеханического типа;

–резистор;

–потенциометр;

–реостат;

–катушка индуктивности;

–конденсатор.

Коммутационные устройства:

–нормально разомкнутый контакт;

–нормально замкнутый контакт;

–переключающий контакт.

Показывающие приборы (A, V, W):

Преобразовательные устройства:

–воздушный трансформатор;

–диодный мост (двухполупериодный выпрямитель);

–инвертор.

Принципиальная схема электрической цеписхема электрической цепи, изображающая соединение реальных элементов этой цепи.

Пример. Простейшая электрическая цепь – гальванический элемент, соединенный с лампой накаливания через выключатель с помощью соединительных проводов. Для измерения напряжения и тока в цепь включены вольтметр и амперметр.

Функциональная (структурная, блок-схема) – схема электрической цепи, изображающая соединение отдельных блоков сложной электрической цепи, выполняющих определенные функции (усиление, выпрямление, инвертирование т.д.)

Двухполюсникчасть электрической цепи, которая рассматривается относительно двух каких-либо зажимов.

Четырехполюсникчасть электрической цепи, имеющая два входных и два выходных зажима.

Активная цепьчасть электрической цепи, в которой действуют источники электрической энергии.

Пассивная цепьчасть электрической цепи, в которой нет источника электрической энергии.

Схема замещения электрической цепи

Ни функциональная, ни принципиальная схемы электрических цепей не отражают количественную сторону электромагнитных процессов, которые имеют место в элементах цепи и которые определяют режим работы этой цепи независимо от конструкции и физической природы этих элементов.

Схема замещения(расчетная математическая модель, эквивалентная)электрической цеписхема электрической цепи, изображающая соединения абстрактных, идеальных элементов, с достаточным приближением отображающих электромагнитные процессы в электрической цепи.

В теории электрических цепей реальные элементы, из которых составляется электрическая цепь, заменяются абстрактными идеальными элементами с определенными свойствами.

Какие же это элементы? И какие электромагнитные процессы они отражают?

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: